Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

remove old rope usage #12552

Merged
merged 1 commit into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 0 additions & 67 deletions python/llm/src/ipex_llm/transformers/layers/rope_embedding.py

This file was deleted.

120 changes: 0 additions & 120 deletions python/llm/src/ipex_llm/transformers/models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -2500,126 +2500,6 @@ def custom_forward(*inputs):
)


# For training
def llama_attention_fast_forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
padding_mask: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
use_fast_rope = should_use_fast_rope(self, hidden_states, position_ids)

# Check for inference
if use_cache and past_key_value is not None and q_len == 1:
A, past_key_value = llama_attention_forward_4_31(
self,
hidden_states,
past_key_value,
position_ids,
)
return A, None, past_key_value

if self.config.pretraining_tp > 1:
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
self.config.pretraining_tp)
query_slices = self.q_proj.weight.split(
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
)
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)

query_states = [F.linear(hidden_states, query_slices[i])
for i in range(self.config.pretraining_tp)]
query_states = torch.cat(query_states, dim=-1)

key_states = [F.linear(hidden_states, key_slices[i])
for i in range(self.config.pretraining_tp)]
key_states = torch.cat(key_states, dim=-1)

value_states = [F.linear(hidden_states, value_slices[i])
for i in range(self.config.pretraining_tp)]
value_states = torch.cat(value_states, dim=-1)

else:
if hasattr(self, "q_proj"):
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
else:
qkv = self.qkv_proj(hidden_states)
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim)
query_states, key_states, value_states = qkv.split([self.num_heads,
self.num_key_value_heads,
self.num_key_value_heads], dim=2)

query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads,
self.head_dim).transpose(1, 2)

kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]

if use_fast_rope:
from ipex_llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
query_states, key_states = apply_fast_rope_embedding(query_states,
key_states,
position_ids,
"llama")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "llama")

if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)

past_key_value = (key_states, value_states) if use_cache else None

key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

cache_position = None
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
attention_mask, cache_position,
bsz, q_len, kv_seq_len,
self.head_dim, self.num_heads, output_attentions)

attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
if attn_output.size() != attn_output_size:
invalidInputError(False,
f"`attn_output` should be of size {attn_output_size},"
f" but is {attn_output.size()}")

attn_output = attn_output.transpose(1, 2).contiguous()

attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)

if self.config.pretraining_tp > 1:
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
dim=1)
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
for i in range(self.config.pretraining_tp)])
else:
attn_output = self.o_proj(attn_output)

if not output_attentions:
attn_weights = None

return attn_output, attn_weights, past_key_value


def llama_model_forward_4_41_internal(
self,
input_ids: torch.LongTensor = None,
Expand Down
16 changes: 0 additions & 16 deletions python/llm/src/ipex_llm/transformers/qlora.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,7 +296,6 @@ def get_peft_model(*args, **kwargs):

if model.device.type == "xpu":
cast_lora_weight(model, torch.bfloat16)
_optimize_post(model)
torch.xpu.synchronize()

return model
Expand Down Expand Up @@ -390,18 +389,3 @@ def cast_lora_weight(model, dtype=torch.bfloat16):
if hasattr(module, 'weight'):
if module.weight.dtype == torch.float32:
module = module.to(dtype)


def _optimize_post(model):
import transformers
from packaging import version
from ipex_llm.transformers.convert import convert_forward
from ipex_llm.transformers.models.llama import llama_attention_fast_forward

trans_version = transformers.__version__
if version.parse(trans_version) >= version.parse("4.31.0"):
LOG.info("Optimizing Llama finetuning....")
convert_forward(
model,
transformers.models.llama.modeling_llama.LlamaAttention,
llama_attention_fast_forward,)
Loading