Skip to content

Commit

Permalink
refactor qwen2 and llama3 (#12587)
Browse files Browse the repository at this point in the history
  • Loading branch information
MeouSker77 authored Dec 20, 2024
1 parent 51ff9eb commit f3b5fad
Show file tree
Hide file tree
Showing 4 changed files with 16 additions and 103 deletions.
1 change: 0 additions & 1 deletion python/llm/src/ipex_llm/transformers/models/bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,6 @@
import torch
import torch.utils.checkpoint
from torch.nn import functional as F
from ipex_llm.transformers.models.utils import use_fused_layer_norm
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache

import os
Expand Down
47 changes: 6 additions & 41 deletions python/llm/src/ipex_llm/transformers/models/llama32.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,14 +42,12 @@
from typing import Optional, Tuple, Union
from transformers.cache_utils import Cache
from transformers.modeling_outputs import BaseModelOutputWithPast
from transformers.models.llama.modeling_llama import repeat_kv
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb

from ipex_llm.utils.common import invalidInputError
from ipex_llm.transformers.models.common import attention_softmax
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
from ipex_llm.transformers.models.utils import should_use_compresskv, \
is_enough_kv_cache_room_4_36
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache, DynamicCompressCache, \
Expand Down Expand Up @@ -233,44 +231,11 @@ def llama_attention_forward(
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, None)

kv_seq_len = key_states.size(2)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, :kv_seq_len]
else:
causal_mask = None

attn_weights = None
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if isinstance(past_key_value, DynamicFp8Cache):
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, causal_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, causal_mask)
else:
if isinstance(past_key_value, DynamicFp8Cache):
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

if causal_mask is not None:
attn_weights = attn_weights + causal_mask

# upcast attention to fp32
attn_weights = attention_softmax(attn_weights)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == key_states.size(2), math.sqrt(self.head_dim)
)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
Expand Down
61 changes: 10 additions & 51 deletions python/llm/src/ipex_llm/transformers/models/qwen2.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,11 +46,12 @@
from torch.nn.functional import scaled_dot_product_attention as sdpa

from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.common import scaled_dot_product_attention
from ipex_llm.transformers.models.utils import SILU, mlp_fusion_check
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache, \
should_use_compresskv, is_enough_kv_cache_room_4_36, get_compresskv_attn_mask
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
should_use_compresskv, is_enough_kv_cache_room_4_36
from ipex_llm.transformers.models.utils import use_flash_attention
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
DynamicCompressCache, DynamicCompressFp8Cache
from ipex_llm.utils.common import invalidInputError
Expand Down Expand Up @@ -532,7 +533,6 @@ def qwen2_attention_forward(
# [CompressKV]
from ipex_llm.transformers.kv import DynamicCompressCache
use_compresskv = isinstance(past_key_value, DynamicCompressCache)
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)

if hasattr(self, 'qkv_proj') and self.qkv_proj is not None:
qkv = self.qkv_proj(hidden_states)
Expand Down Expand Up @@ -583,61 +583,20 @@ def qwen2_attention_forward(
self.layer_idx, None)

attn_weights = None
if query_states.device.type == "cpu":
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output = sdpa(query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.attention_dropout if self.training else 0.0,
is_causal=self.is_causal and attention_mask is None and q_len > 1)
elif not self.training and not hidden_states.requires_grad and \
use_flash_attention(query_states, key_states, attention_mask):
if query_states.device.type == 'xpu' \
and use_flash_attention(query_states, key_states, attention_mask):
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_output = sdpa(query_states.to(device, dtype=torch.float16),
key_states.to(device, dtype=torch.float16),
value_states.to(device, dtype=torch.float16),
is_causal=True).to(hidden_states.dtype)
elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons
if use_compresskv:
attention_mask = get_compresskv_attn_mask(key_states, attention_mask)
if use_quantizekv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
import xe_addons
if use_quantizekv:
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
value_states, attention_mask)
else:
attn_output = xe_addons.sdp_causal(query_states, key_states,
value_states, attention_mask)
else:
if use_quantizekv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)

attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = scaled_dot_product_attention(
query_states, key_states, value_states,
attention_mask, q_len == kv_seq_len, math.sqrt(self.head_dim)
)

attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
Expand Down
10 changes: 0 additions & 10 deletions python/llm/src/ipex_llm/transformers/models/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -358,16 +358,6 @@ def use_xmx(x: torch.Tensor, qtype: int):
)


def use_fused_layer_norm(x: torch.Tensor, training: bool):
device = get_xpu_device_type(x)
return (
not training
and not x.requires_grad
and device in ["arc", "flex", "pvc", "mtl", "lnl"] # fused layer norm cannot run on UHD
and x.numel() // x.size(-1) == 1 # fused layer norm is slower in first token
)


def fp16_fusion_check(proj, x, training):
# only use fp16 fusion on PVC inference
if proj is None:
Expand Down

0 comments on commit f3b5fad

Please sign in to comment.