Skip to content

Commit

Permalink
Add --modelscope option for glm-v4 and MiniCPM-V-2_6
Browse files Browse the repository at this point in the history
  • Loading branch information
ATMxsp01 committed Dec 19, 2024
1 parent 80f2fdc commit f1641c9
Show file tree
Hide file tree
Showing 4 changed files with 81 additions and 23 deletions.
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# MiniCPM-V-2_6
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) as reference MiniCPM-V-2_6 model.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) (or [OpenBMB/MiniCPM-V-2_6](https://www.modelscope.cn/models/OpenBMB/MiniCPM-V-2_6) for ModelScope) as reference MiniCPM-V-2_6 model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -16,6 +16,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.40.0 "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -28,6 +31,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers==4.40.0 "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -96,31 +102,48 @@ set SYCL_CACHE_PERSISTENT=1
### 4. Running examples

- chat without streaming mode:
```
```bash
# for Hugging Face model hub
python ./chat.py --prompt 'What is in the image?'

# for ModelScope model hub
python ./chat.py --prompt 'What is in the image?' --modelscope
```
- chat in streaming mode:
```
```bash
# for Hugging Face model hub
python ./chat.py --prompt 'What is in the image?' --stream

# for ModelScope model hub
python ./chat.py --prompt 'What is in the image?' --stream --modelscope
```
- save model with low-bit optimization (if `LOWBIT_MODEL_PATH` does not exist)
```
```bash
# for Hugging Face model hub
python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'

# for ModelScope model hub
python ./chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope
```
- chat with saved model with low-bit optimization (if `LOWBIT_MODEL_PATH` exists):
```
```bash
# for Hugging Face model hub
python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?'

# for ModelScope model hub
python ./chat.py --lowbit-path LOWBIT_MODEL_PATH --prompt 'What is in the image?' --modelscope
```

> [!TIP]
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'` for **Hugging Face** or `'OpenBMB/MiniCPM-V-2_6'` for **ModelScope**.
- `--lowbit-path LOWBIT_MODEL_PATH`: argument defining the path to save/load the model with IPEX-LLM low-bit optimization. If it is an empty string, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded. If it is an existing path, the saved model with low-bit optimization in `LOWBIT_MODEL_PATH` will be loaded. If it is a non-existing path, the original pretrained model specified by `REPO_ID_OR_MODEL_PATH` will be loaded, and the optimized low-bit model will be saved into `LOWBIT_MODEL_PATH`. It is default to be `''`, i.e. an empty string.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--stream`: flag to chat in streaming mode
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,14 +22,13 @@
import torch
from PIL import Image
from ipex_llm.transformers import AutoModel
from transformers import AutoTokenizer, AutoProcessor


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the MiniCPM-V-2_6 model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument("--lowbit-path", type=str,
default="",
help="The path to the saved model folder with IPEX-LLM low-bit optimization. "
Expand All @@ -44,9 +43,20 @@
help='Prompt to infer')
parser.add_argument('--stream', action='store_true',
help='Whether to chat in streaming mode')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

if args.modelscope:
from modelscope import AutoTokenizer, AutoProcessor
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer, AutoProcessor
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("OpenBMB/MiniCPM-V-2_6" if args.modelscope else "openbmb/MiniCPM-V-2_6")
image_path = args.image_url_or_path

lowbit_path = args.lowbit_path
Expand All @@ -61,7 +71,8 @@
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
modules_to_not_convert=["vpm", "resampler"],
model_hub=model_hub)

tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
Expand All @@ -70,7 +81,8 @@
optimize_model=True,
trust_remote_code=True,
use_cache=True,
modules_to_not_convert=["vpm", "resampler"])
modules_to_not_convert=["vpm", "resampler"],
model_hub=model_hub)
tokenizer = AutoTokenizer.from_pretrained(lowbit_path,
trust_remote_code=True)

Expand Down
19 changes: 15 additions & 4 deletions python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# GLM-4V
In this directory, you will find examples on how you could apply IPEX-LLM FP8 optimizations on GLM-4V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) as a reference GLM-4V model.
In this directory, you will find examples on how you could apply IPEX-LLM FP8 optimizations on GLM-4V models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b) (or [ZhipuAI/glm-4v-9b](https://www.modelscope.cn/models/ZhipuAI/glm-4v-9b) for ModelScope) as a reference GLM-4V model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -16,6 +16,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install tiktoken transformers==4.42.4 "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -28,6 +31,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install tiktoken transformers==4.42.4 "trl<0.12.0"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -95,15 +101,20 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is in the image?'
```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --image-url-or-path IMAGE_URL_OR_PATH --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'THUDM/glm-4v-9b'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the GLM-4V model (e.g. `THUDM/glm-4v-9b`) to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/glm-4v-9b'` for **Hugging Face** or `'ZhipuAI/glm-4v-9b'` for **ModelScope**.
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
#### [THUDM/glm-4v-9b](https://huggingface.co/THUDM/glm-4v-9b)
Expand Down
24 changes: 18 additions & 6 deletions python/llm/example/GPU/HuggingFace/Multimodal/glm-4v/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,23 +22,33 @@

from PIL import Image
from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model')
parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4v-9b",
help='The huggingface repo id for the THUDM/glm-4v-9b model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the glm-4v model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("ZhipuAI/glm-4v-9b" if args.modelscope else "THUDM/glm-4v-9b")
image_path = args.image_url_or_path

# Load model in 4 bit,
Expand All @@ -49,7 +59,9 @@
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True).half().to('xpu')
use_cache=True,
model_hub=model_hub)
model = model.half().to('xpu')

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

Expand Down

0 comments on commit f1641c9

Please sign in to comment.