Skip to content

Commit

Permalink
Add --modelscope for more models
Browse files Browse the repository at this point in the history
  • Loading branch information
ATMxsp01 committed Dec 17, 2024
1 parent 429bf1f commit 897e6fa
Show file tree
Hide file tree
Showing 8 changed files with 127 additions and 38 deletions.
17 changes: 14 additions & 3 deletions python/llm/example/GPU/HuggingFace/LLM/baichuan2/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Baichuan
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Baichuan2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) as a reference Baichuan model.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Baichuan2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) (or [baichuan-inc/Baichuan2-7B-Chat](https://www.modelscope.cn/models/[baichuan-inc/Baichuan2-7B-Chat]) for ModelScope) as a reference Baichuan model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -16,6 +16,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers_stream_generator # additional package required for Baichuan-7B-Chat to conduct generation

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -28,6 +31,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers_stream_generator # additional package required for Baichuan-7B-Chat to conduct generation

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -95,14 +101,19 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Baichuan model (e.g `baichuan-inc/Baichuan2-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-7B-Chat'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Baichuan model (e.g `baichuan-inc/Baichuan2-7B-Chat`) to be downloaded, or the path to the checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-7B-Chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
#### [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
Expand Down
18 changes: 14 additions & 4 deletions python/llm/example/GPU/HuggingFace/LLM/baichuan2/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

# prompt format referred from https://github.com/baichuan-inc/Baichuan2/issues/227
# and https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/main/generation_utils.py#L7-L49
Expand All @@ -29,14 +28,24 @@
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Baichuan model')
parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
help='The huggingface repo id for the Baichuan model to be downloaded'
', or the path to the huggingface checkpoint folder')
help='The Hugging Face repo id for the Baichuan model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()

if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path

# Load model in 4 bit,
Expand All @@ -50,7 +59,8 @@
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
use_cache=True)
use_cache=True,
model_hub=model_hub)
model = model.half().to('xpu')

# Load tokenizer
Expand Down
17 changes: 14 additions & 3 deletions python/llm/example/GPU/HuggingFace/LLM/llama2/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Llama2
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) (or [shakechen/Llama-2-7b-chat-hf](https://www.modelscope.cn/models/shakechen/Llama-2-7b-chat-hf) and [ydyajyA/Llama-2-13b-chat-hf](https://www.modelscope.cn/models/ydyajyA/Llama-2-13b-chat-hf) for ModelScope) as reference Llama2 models.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -14,6 +14,9 @@ conda create -n llm python=3.11
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -24,6 +27,9 @@ conda activate llm

# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -91,14 +97,19 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'` for **Hugging Face** and `'shakechen/Llama-2-7b-chat-hf'` for **ModelScope**.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)
Expand Down
27 changes: 20 additions & 7 deletions python/llm/example/GPU/HuggingFace/LLM/llama2/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import LlamaTokenizer

# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
Expand All @@ -41,16 +40,29 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],

if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

if args.modelscope:
from modelscope import AutoTokenizer
Tokenizer = AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import LlamaTokenizer
Tokenizer = LlamaTokenizer
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("shakechen/Llama-2-7b-chat-hf" if args.modelscope else "meta-llama/Llama-2-7b-chat-hf")

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
Expand All @@ -60,11 +72,12 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True)
use_cache=True,
model_hub=model_hub)
model = model.half().to('xpu')

# Load tokenizer
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)

# Generate predicted tokens
with torch.inference_mode():
Expand Down
19 changes: 15 additions & 4 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# MiniCPM
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) (or [openbmb/MiniCPM-2B-sft-bf16](https://www.modelscope.cn/models/openbmb/MiniCPM-2B-sft-bf16) for ModelScope) as a reference MiniCPM model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -15,6 +15,9 @@ conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install "transformers>=4.36"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -26,6 +29,9 @@ conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install "transformers>=4.36"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -93,14 +99,19 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is AI?'
```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
Expand Down
25 changes: 18 additions & 7 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,22 +19,32 @@
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
help='The huggingface repo id for the MiniCPM model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the MiniCPM model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("openbmb/MiniCPM-2B-sft-bf16" if args.modelscope else "openbmb/MiniCPM-2B-sft-bf16")

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
Expand All @@ -43,9 +53,10 @@
load_in_4bit=True,
trust_remote_code=True,
optimize_model=True,
use_cache=True)
use_cache=True,
model_hub=model_hub)

model = model.to('xpu')
model = model.half().to('xpu')

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
Expand Down
Loading

0 comments on commit 897e6fa

Please sign in to comment.