Skip to content

Commit

Permalink
Add --modelscope in GPU examples for minicpm, minicpm3, baichuan2 (#…
Browse files Browse the repository at this point in the history
…12564)

* Add --modelscope for more models

* minicpm

---------

Co-authored-by: ATMxsp01 <[email protected]>
  • Loading branch information
ATMxsp01 and ATMxsp01 authored Dec 19, 2024
1 parent 3eeb02f commit 47da3c9
Show file tree
Hide file tree
Showing 6 changed files with 102 additions and 28 deletions.
17 changes: 14 additions & 3 deletions python/llm/example/GPU/HuggingFace/LLM/baichuan2/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Baichuan
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Baichuan2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) as a reference Baichuan model.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Baichuan2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan-7B-Chat) (or [baichuan-inc/Baichuan2-7B-Chat](https://www.modelscope.cn/models/[baichuan-inc/Baichuan2-7B-Chat]) for ModelScope) as a reference Baichuan model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -16,6 +16,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers_stream_generator # additional package required for Baichuan-7B-Chat to conduct generation

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -28,6 +31,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install transformers_stream_generator # additional package required for Baichuan-7B-Chat to conduct generation

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -95,14 +101,19 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Baichuan model (e.g `baichuan-inc/Baichuan2-7B-Chat`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-7B-Chat'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the Baichuan model (e.g `baichuan-inc/Baichuan2-7B-Chat`) to be downloaded, or the path to the checkpoint folder. It is default to be `'baichuan-inc/Baichuan2-7B-Chat'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
#### [baichuan-inc/Baichuan2-7B-Chat](https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat)
Expand Down
18 changes: 14 additions & 4 deletions python/llm/example/GPU/HuggingFace/LLM/baichuan2/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

# prompt format referred from https://github.com/baichuan-inc/Baichuan2/issues/227
# and https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/main/generation_utils.py#L7-L49
Expand All @@ -29,14 +28,24 @@
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Baichuan model')
parser.add_argument('--repo-id-or-model-path', type=str, default="baichuan-inc/Baichuan2-7B-Chat",
help='The huggingface repo id for the Baichuan model to be downloaded'
', or the path to the huggingface checkpoint folder')
help='The Hugging Face repo id for the Baichuan model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()

if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path

# Load model in 4 bit,
Expand All @@ -50,7 +59,8 @@
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True,
use_cache=True)
use_cache=True,
model_hub=model_hub)
model = model.half().to('xpu')

# Load tokenizer
Expand Down
28 changes: 24 additions & 4 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# MiniCPM
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) as a reference MiniCPM model.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16) and [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16) (or [OpenBMB/MiniCPM-2B-sft-bf16](https://www.modelscope.cn/models/OpenBMB/MiniCPM-2B-sft-bf16) and [OpenBMB/MiniCPM-1B-sft-bf16](https://www.modelscope.cn/models/OpenBMB/MiniCPM-1B-sft-bf16) for ModelScope) as a reference MiniCPM model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -15,6 +15,9 @@ conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install "transformers>=4.36"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -26,6 +29,9 @@ conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install "transformers>=4.36"

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -93,14 +99,19 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is AI?'
```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the MiniCPM model (e.g. `openbmb/MiniCPM-2B-sft-bf16` or `openbmb/MiniCPM-1B-sft-bf16`) to be downloaded, or the path to the checkpoint folder. It is default to be `'openbmb/MiniCPM-2B-sft-bf16'` for **Hugging Face** and `'OpenBMB/MiniCPM-2B-sft-bf16'` for **ModelScope**.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
#### [openbmb/MiniCPM-2B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-2B-sft-bf16)
Expand All @@ -112,3 +123,12 @@ Inference time: xxxx s
-------------------- Output --------------------
<s> <用户>what is AI?<AI> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It is a field of computer science
```

#### [openbmb/MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16)

```log
-------------------- Prompt --------------------
<用户>What is AI?<AI>
-------------------- Output --------------------
<s> <用户>What is AI?<AI> Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. It involves the development of computer systems that
```
25 changes: 18 additions & 7 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,22 +19,32 @@
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-2B-sft-bf16",
help='The huggingface repo id for the MiniCPM model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the MiniCPM model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("OpenBMB/MiniCPM-2B-sft-bf16" if args.modelscope else "openbmb/MiniCPM-2B-sft-bf16")

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
Expand All @@ -43,9 +53,10 @@
load_in_4bit=True,
trust_remote_code=True,
optimize_model=True,
use_cache=True)
use_cache=True,
model_hub=model_hub)

model = model.to('xpu')
model = model.half().to('xpu')

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
Expand Down
19 changes: 15 additions & 4 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm3/README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# MiniCPM3
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM3 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B) as a reference MiniCPM3 model.
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM3 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B) (or [OpenBMB/MiniCPM3-4B](https://www.modelscope.cn/models/OpenBMB/MiniCPM3-4B) for ModelScope) as a reference MiniCPM3 model.

## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
Expand All @@ -16,6 +16,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install jsonschema datamodel_code_generator

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

#### 1.2 Installation on Windows
Expand All @@ -28,6 +31,9 @@ conda activate llm
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/

pip install jsonschema datamodel_code_generator

# [optional] only needed if you would like to use ModelScope as model hub
pip install modelscope==1.11.0
```

### 2. Configures OneAPI environment variables for Linux
Expand Down Expand Up @@ -95,14 +101,19 @@ set SYCL_CACHE_PERSISTENT=1
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples

```
python ./generate.py --prompt 'What is AI?'
```bash
# for Hugging Face model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT

# for ModelScope model hub
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM3 model (e.g. `openbmb/MiniCPM3-4B`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM3-4B'`.
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the MiniCPM3 model (e.g. `openbmb/MiniCPM3-4B`) to be downloaded, or the path to the checkpoint folder. It is default to be `'openbmb/MiniCPM3-4B'` for **Hugging Face** or `'OpenBMB/MiniCPM3-4B'` for **ModelScope**.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
- `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**.

#### Sample Output
#### [openbmb/MiniCPM3-4B](https://huggingface.co/openbmb/MiniCPM3-4B)
Expand Down
23 changes: 17 additions & 6 deletions python/llm/example/GPU/HuggingFace/LLM/minicpm3/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,21 +19,31 @@
import argparse

from ipex_llm.transformers import AutoModelForCausalLM
from transformers import AutoTokenizer


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM3-4B",
help='The huggingface repo id for the MiniCPM3 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the MiniCPM3 model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--prompt', type=str, default="What is AI?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")

args = parser.parse_args()
model_path = args.repo_id_or_model_path

if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'

model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("OpenBMB/MiniCPM3-4B" if args.modelscope else "openbmb/MiniCPM3-4B")

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
Expand All @@ -43,7 +53,8 @@
load_in_4bit=True,
trust_remote_code=True,
optimize_model=True,
use_cache=True)
use_cache=True,
model_hub=model_hub)

model = model.half().to('xpu')

Expand Down

0 comments on commit 47da3c9

Please sign in to comment.