-
Notifications
You must be signed in to change notification settings - Fork 0
Home
Kaixin edited this page May 6, 2022
·
21 revisions
A list of species and antibiotics involved in this benchmarking study:
Species | Antibiotics | Number of antibiotics |
---|---|---|
Mycobacterium tuberculosis | amikacin , capreomycin, ethambutol, ethiomide, ethionamide, isoniazid, kanamycin, ofloxacin, pyrazinamide, rifampicin, rifampin, streptomycin | 12 |
Salmonella enterica | amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, gentamicin, nalidixic acid, streptomycin, sulfisoxazole, tetracycline | 11 |
Streptococcus pneumoniae | chloramphenicol, erythromycin, penicillin, tetracycline, trimethoprim/sulfamethoxazole | 5 |
Neisseria gonorrhoeae | azithromycin, cefixime | 2 |
Escherichia coli | amoxicillin, amoxicillin/clavulanic acid, ampicillin, aztreonam, cefotaxime, ceftazidime, ceftriaxone, cefuroxime, ciprofloxacin, gentamicin, piperacillin/tazobactam, tetracycline, trimethoprim | 13 |
Staphylococcus aureus | cefoxitin, ciprofloxacin, clindamycin, erythromycin, fusidic acid, gentamicin, methicillin, penicillin, tetracycline | 9 |
Klebsiella pneumoniae | amikacin, aztreonam, cefepime, cefoxitin, ciprofloxacin, gentamicin, imipenem, levofloxacin, meropenem, piperacillin/tazobactam, tetracycline, tobramycin, trimethoprim/sulfamethoxazole | 13 |
Enterococcus faecium | vancomycin | 1 |
Acinetobacter baumannii | amikacin, ampicillin/sulbactam, imipenem, levofloxacin, meropenem, tobramycin, trimethoprim/sulfamethoxazole | 7 |
Pseudomonas aeruginosa | ceftazidime, ciprofloxacin, levofloxacin, meropenem, tobramycin | 5 |
Campylobacter jejuni | tetracycline | 1 |
Load ID list and phenotype through a module
cd Patric_data
python
import amr_utility.load_data
import numpy as np
antibiotics,ID,Y=Patric_data.load_data.extract_info(s,balance,level)
Input
- s: one of 'Pseudomonas aeruginosa' 'Klebsiella pneumoniae' 'Escherichia coli' 'Staphylococcus aureus' 'Mycobacterium tuberculosis' 'Salmonella enterica' 'Streptococcus pneumoniae' 'Neisseria gonorrhoeae'
- balance: True; False. If True is set, it provides additional functions of downsampling for unbalanced data set. Reset the majority category's size to 1.5 of the minority category's size, by random selection.
unbalance definition:
balance_ratio=(Number of strains in Susceptible)/(Number of strains in Resistance)
balance_ratio > 2 or balance_ratio < 0.5
- level: 'strict';'loose'.
Output
- antibiotics: a list of selected antibiotics w.r.t. specified species.
- ID : matrix of id lists. Each list is the id list for an antibiotic, corresponding to antibiotics list.
- Y: matrix of phenotye lists. 'Resistant': 1, 'Susceptible': 0. Each list is the binary phenotype list for an antibiotic, corresponding to antibiotics list.
Example usage: Copy the contents of Patric folder to your working directory, then:
import amr_utility.load_data
import numpy as np
antibiotics,ID,Y=Patric_data.load_data.extract_info('Pseudomonas aeruginosa',True,'strict')
print('Check: antibiotics ',antibiotics,len(ID),len(Y))
print(len(antibiotics))
for i in np.arange(len(ID)):
print('Check number of strains for antibiotics ', antibiotics[i], ': ' ,len(ID[i]),' in ID list, ',len(Y[i]), 'in y list')
# Output a summary of phenotype distribution w.r.t. each antibiotic
antibiotics_selected=load_data.summary('Pseudomonas aeruginosa','loose')