TinyEarn is an simple selenium-based webscaper to pull earnings data from zacks.com. It navigates to zacks.com/stock/research/{TICKER}/earnings-announcements and scrapes the earnings data from the present table and the table on the sales tab.
Requirements:
- Python3
- Firefox Browser
- geckodriver
Packages:
- pandas>=0.24
- numpy>=1.15.4
- selenium>=3.3.0
- requests>=2.23
- beautifulsoup4>=4.9.0
- geckodriver_autoinstaller>=0.1
Simply install the package using pip in your command line.
pip install TinyEarn
Install the Firefox Webdriver dependency, geckodriver, in your system file PATH. For some users, this will already be satisfied.
A simple tutorial on how to do this can be found on selenium's website here. This process is different based on your specific system.
There is one public function in the TinyEarn()
Class: get_earnings()
. It stores no private variables so the same TinyEarn()
class can be used across mutliple tickers.
get_earnings()
- Scrapes zacks.com/stock/research/{TICKER}/earnings-announcements to get earnings data. NaN values are filled in for missing data. Dollar values and percentages are expressed as floating point decimals.
Parameters:
- ticker (str): The stock ticker for the company you'd like to pull data for.
- start (datetime.date or str): Only pull data from earnings reported after this date.
- end (datetime.date or str): Only pull data from earnings reported before this date. Defaults to the current date.
- pandas(bool, optional): If true, this function returns a pandas dataframe. If False, it returns a dictionary. Defaults to True.
- delay (int): Time to wait (in seconds) in between page changes. Defaults to 1.
Returns: Returns data from each earnings report by the specified company within the specified date range. Each row or key represents an earnings call with the following attributes:
Period Ending
: The month that marks the last month of the quarter being reported on. ie, 3/2017 is refering to the Q1 2017 earnings report.Reported_EPS
: Earnings Per Share reported by the company for that quarter.Estimated_EPS
: The consensus estimated Earnings Per Share.Surprise_EPS
: The surprise in EPS. The difference between the estimated EPS and the reported one.Surprise_%_EPS
: The surprise expressed as a percentage.Reported_Revenue
: Total Revenue reported by the company for that quarter.Estimated_Revenue
: The consensus estimated Revenue.Surprise_Revenue
: The surprise in Revenue. The difference between the estimated Revenue and the reported one.Surprise_%_Revenue
: The surprise expressed as a percentage.
A few examples of how this class can be used:
import TinyEarn as ty
scraper = ty.TinyEarn()
tsla = scraper.get_earnings('TSLA', start = '04/23/2017', pandas=True, delay=0) # Get earnings from April 23rd 2017 to today.
tsla[['Period Ending','Estimated_EPS','Reported_EPS','Surprise_EPS','Estimated_Revenue','Reported_Revenue']]
Period Ending | Estimated_EPS | Reported_EPS | Surprise_EPS | Estimated_Revenue | Reported_Revenue | |
---|---|---|---|---|---|---|
2020-04-29 | 2020-03-01 | -0.22 | 1.24 | 1.46 | 5374.87 | 5985.00 |
2020-01-29 | 2019-12-01 | 1.62 | 2.14 | 0.52 | 7046.82 | 7384.00 |
2019-10-23 | 2019-09-01 | -0.15 | 1.86 | 2.01 | 6517.00 | 6303.00 |
2019-07-24 | 2019-06-01 | -0.54 | -1.12 | -0.58 | 6375.49 | 6349.68 |
2019-04-24 | 2019-03-01 | -1.21 | -2.90 | -1.69 | 5778.73 | 4541.46 |
2019-01-30 | 2018-12-01 | 2.08 | 1.93 | -0.15 | 7139.45 | 7225.87 |
2018-10-24 | 2018-09-01 | -0.55 | 2.90 | 3.45 | 5666.67 | 6824.41 |
2018-08-01 | 2018-06-01 | -2.78 | -3.06 | -0.28 | 3802.96 | 4002.23 |
2018-05-02 | 2018-03-01 | -3.37 | -3.35 | 0.02 | 3169.77 | 3408.75 |
2018-02-07 | 2017-12-01 | -3.19 | -3.04 | 0.15 | 3298.70 | 3288.25 |
2017-11-01 | 2017-09-01 | -2.45 | -2.92 | -0.47 | 2916.96 | 2984.68 |
2017-08-02 | 2017-06-01 | -1.94 | -1.33 | 0.61 | 2548.22 | 2789.56 |
2017-05-03 | 2017-03-01 | -0.55 | -1.33 | -0.78 | 2561.14 | 2696.27 |
tsla.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 13 entries, 2020-04-29 to 2017-05-03
Data columns (total 9 columns):
Period Ending 13 non-null datetime64[ns]
Estimated_EPS 13 non-null float64
Reported_EPS 13 non-null float64
Surprise_EPS 13 non-null float64
Surprise_%_EPS 13 non-null float64
Estimated_Revenue 13 non-null float64
Reported_Revenue 13 non-null float64
Surprise_Revenue 13 non-null float64
Surprise_%_Revenue 13 non-null float64
dtypes: datetime64[ns](1), float64(8)
memory usage: 1.0 KB
import TinyEarn as ty
scraper = ty.TinyEarn()
msft = scraper.get_earnings('MSFT', start = '01/01/2018',end='01/23/2019', delay=0)
msft[['Reported_EPS','Reported_Revenue']]
Reported_EPS | Reported_Revenue | |
---|---|---|
2018-10-24 | 1.14 | 29084.0 |
2018-07-19 | 1.13 | 30085.0 |
2018-04-26 | 0.95 | 26819.0 |
2018-01-31 | 0.96 | 28918.0 |
import TinyEarn as ty
scraper = ty.TinyEarn()
JPM = scraper.get_earnings('JPM', start = '04/23/2017', pandas=False, delay=0) #Testing Return as Dict
print(JPM)
{Timestamp('2020-04-14 00:00:00'):
{'Period Ending': Timestamp('2020-03-01 00:00:00'),
'Estimated_EPS': 1.7,
'Reported_EPS': 0.78,
'Surprise_EPS': -0.92,
'Surprise_%_EPS': -0.5412,
'Estimated_Revenue': 29152.0,
'Reported_Revenue': 28251.0,
'Surprise_Revenue': -901.0,
'Surprise_%_Revenue': -0.030899999999999997},
Timestamp('2020-01-14 00:00:00'):
{'Period Ending': Timestamp('2019-12-01 00:00:00'),
'Estimated_EPS': 2.32,
'Reported_EPS': 2.57,
'Surprise_EPS': 0.25,
'Surprise_%_EPS': 0.10779999999999999,
'Estimated_Revenue': 27261.0,
'Reported_Revenue': 28331.0,
'Surprise_Revenue': 1070.0,
'Surprise_%_Revenue': 0.0393},
Timestamp('2019-10-15 00:00:00'):
{'Period Ending': Timestamp('2019-09-01 00:00:00'),
'Estimated_EPS': 2.44,
'Reported_EPS': 2.68,
'Surprise_EPS': 0.24,
'Surprise_%_EPS': 0.0984,
'Estimated_Revenue': 28403.0,
'Reported_Revenue': 29341.0,
'Surprise_Revenue': 938.0,
'Surprise_%_Revenue': 0.033},
Timestamp('2019-07-16 00:00:00'):
{'Period Ending': Timestamp('2019-06-01 00:00:00'),
'Estimated_EPS': 2.5,
'Reported_EPS': 2.59,
'Surprise_EPS': 0.09,
'Surprise_%_EPS': 0.036000000000000004,
'Estimated_Revenue': 28416.5,
'Reported_Revenue': 28832.0,
'Surprise_Revenue': 415.5,
'Surprise_%_Revenue': 0.0146}}
The package dependencies are auto-installed when you install TinyEarn. If this problem persists for you, download source code and run the following code in the package path to install dependencies.
pip install -r requirements.txt
This error is raised because geckodriver is not installed in the right system PATH. If you have already done step 2 in the installation process, here are a few useful Stackoverflow responses to help with troubleshooting:
- Selenium using Python - Geckodriver executable needs to be in PATH
- How to put geckodriver into PATH?
Your geckodriver is not compatible with the version of Firefox you have. One of them needs to be updated.