Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix pyannote processor post_process_speaker_diarization #1082

Merged
merged 1 commit into from
Dec 8, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 56 additions & 0 deletions src/models/pyannote/feature_extraction_pyannote.js
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import { FeatureExtractor, validate_audio_inputs } from '../../base/feature_extraction_utils.js';
import { Tensor } from '../../utils/tensor.js';
import { max, softmax } from '../../utils/maths.js';


export class PyAnnoteFeatureExtractor extends FeatureExtractor {
Expand All @@ -25,4 +26,59 @@ export class PyAnnoteFeatureExtractor extends FeatureExtractor {
};
}

/**
* NOTE: Can return fractional values. `Math.ceil` will ensure correct value.
* @param {number} samples The number of frames in the audio.
* @returns {number} The number of frames in the audio.
*/
samples_to_frames(samples) {
return ((samples - this.config.offset) / this.config.step);
}

/**
* Post-processes the speaker diarization logits output by the model.
* @param {import('../../utils/tensor.js').Tensor} logits The speaker diarization logits output by the model.
* @param {number} num_samples Number of samples in the input audio.
* @returns {Array<Array<{ id: number, start: number, end: number, confidence: number }>>} The post-processed speaker diarization results.
*/
post_process_speaker_diarization(logits, num_samples) {
const ratio = (
num_samples / this.samples_to_frames(num_samples)
) / this.config.sampling_rate;

const results = [];
for (const scores of logits.tolist()) {
const accumulated_segments = [];

let current_speaker = -1;
for (let i = 0; i < scores.length; ++i) {
const probabilities = softmax(scores[i]);
const [score, id] = max(probabilities);
const [start, end] = [i, i + 1];

if (id !== current_speaker) {
// Speaker has changed
current_speaker = id;
accumulated_segments.push({ id, start, end, score });
} else {
// Continue the current segment
accumulated_segments.at(-1).end = end;
accumulated_segments.at(-1).score += score;
}
}

results.push(accumulated_segments.map(
// Convert frame-space to time-space
// and compute the confidence
({ id, start, end, score }) => ({
id,
start: start * ratio,
end: end * ratio,
confidence: score / (end - start),
})
));
}
return results;
}

}
61 changes: 7 additions & 54 deletions src/models/pyannote/processing_pyannote.js
Original file line number Diff line number Diff line change
@@ -1,9 +1,8 @@
import { Processor } from '../../base/processing_utils.js';
import { AutoFeatureExtractor } from '../auto/feature_extraction_auto.js';
import { max, softmax } from '../../utils/maths.js';
import { PyAnnoteFeatureExtractor } from './feature_extraction_pyannote.js';

export class PyAnnoteProcessor extends Processor {
static feature_extractor_class = AutoFeatureExtractor
static feature_extractor_class = PyAnnoteFeatureExtractor

/**
* Calls the feature_extractor function with the given audio input.
Expand All @@ -14,58 +13,12 @@ export class PyAnnoteProcessor extends Processor {
return await this.feature_extractor(audio)
}

/**
* NOTE: Can return fractional values. `Math.ceil` will ensure correct value.
* @param {number} samples The number of frames in the audio.
* @returns {number} The number of frames in the audio.
*/
samples_to_frames(samples) {
return ((samples - this.config.offset) / this.config.step);
/** @type {PyAnnoteFeatureExtractor['post_process_speaker_diarization']} */
post_process_speaker_diarization(...args) {
return /** @type {PyAnnoteFeatureExtractor} */(this.feature_extractor).post_process_speaker_diarization(...args);
}

/**
* Post-processes the speaker diarization logits output by the model.
* @param {import('../../utils/tensor.js').Tensor} logits The speaker diarization logits output by the model.
* @param {number} num_samples Number of samples in the input audio.
* @returns {Array<Array<{ id: number, start: number, end: number, confidence: number }>>} The post-processed speaker diarization results.
*/
post_process_speaker_diarization(logits, num_samples) {
const ratio = (
num_samples / this.samples_to_frames(num_samples)
) / this.config.sampling_rate;

const results = [];
for (const scores of logits.tolist()) {
const accumulated_segments = [];

let current_speaker = -1;
for (let i = 0; i < scores.length; ++i) {
const probabilities = softmax(scores[i]);
const [score, id] = max(probabilities);
const [start, end] = [i, i + 1];

if (id !== current_speaker) {
// Speaker has changed
current_speaker = id;
accumulated_segments.push({ id, start, end, score });
} else {
// Continue the current segment
accumulated_segments.at(-1).end = end;
accumulated_segments.at(-1).score += score;
}
}

results.push(accumulated_segments.map(
// Convert frame-space to time-space
// and compute the confidence
({ id, start, end, score }) => ({
id,
start: start * ratio,
end: end * ratio,
confidence: score / (end - start),
})
));
}
return results;
get sampling_rate() {
return this.feature_extractor.config.sampling_rate;
}
}
Loading