-
Notifications
You must be signed in to change notification settings - Fork 806
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into add-model-file-name
- Loading branch information
Showing
21 changed files
with
482 additions
and
81 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -101,7 +101,7 @@ npm i @xenova/transformers | |
Alternatively, you can use it in vanilla JS, without any bundler, by using a CDN or static hosting. For example, using [ES Modules](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules), you can import the library with: | ||
```html | ||
<script type="module"> | ||
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected].0'; | ||
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected].1'; | ||
</script> | ||
``` | ||
|
||
|
@@ -134,7 +134,7 @@ Check out the Transformers.js [template](https://huggingface.co/new-space?templa | |
|
||
|
||
|
||
By default, Transformers.js uses [hosted pretrained models](https://huggingface.co/models?library=transformers.js) and [precompiled WASM binaries](https://cdn.jsdelivr.net/npm/@xenova/[email protected].0/dist/), which should work out-of-the-box. You can customize this as follows: | ||
By default, Transformers.js uses [hosted pretrained models](https://huggingface.co/models?library=transformers.js) and [precompiled WASM binaries](https://cdn.jsdelivr.net/npm/@xenova/[email protected].1/dist/), which should work out-of-the-box. You can customize this as follows: | ||
|
||
|
||
### Settings | ||
|
@@ -210,6 +210,7 @@ You can refine your search by selecting the task you're interested in (e.g., [te | |
| [Token Classification](https://huggingface.co/tasks/token-classification) | `token-classification` or `ner` | Assigning a label to each token in a text. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.TokenClassificationPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=token-classification&library=transformers.js) | | ||
| [Translation](https://huggingface.co/tasks/translation) | `translation` | Converting text from one language to another. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.TranslationPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=translation&library=transformers.js) | | ||
| [Zero-Shot Classification](https://huggingface.co/tasks/zero-shot-classification) | `zero-shot-classification` | Classifying text into classes that are unseen during training. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.ZeroShotClassificationPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=zero-shot-classification&library=transformers.js) | | ||
| [Feature Extraction](https://huggingface.co/tasks/feature-extraction) | `feature-extraction` | Transforming raw data into numerical features that can be processed while preserving the information in the original dataset. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.FeatureExtractionPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=feature-extraction&library=transformers.js) | | ||
|
||
#### Vision | ||
|
||
|
@@ -223,6 +224,7 @@ You can refine your search by selecting the task you're interested in (e.g., [te | |
| [Object Detection](https://huggingface.co/tasks/object-detection) | `object-detection` | Identify objects of certain defined classes within an image. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.ObjectDetectionPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=object-detection&library=transformers.js) | | ||
| [Video Classification](https://huggingface.co/tasks/video-classification) | n/a | Assigning a label or class to an entire video. | ❌ | | ||
| [Unconditional Image Generation](https://huggingface.co/tasks/unconditional-image-generation) | n/a | Generating images with no condition in any context (like a prompt text or another image). | ❌ | | ||
| [Image Feature Extraction](https://huggingface.co/tasks/image-feature-extraction) | `image-feature-extraction` | Transforming raw data into numerical features that can be processed while preserving the information in the original image. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.ImageFeatureExtractionPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=image-feature-extraction&library=transformers.js) | | ||
|
||
#### Audio | ||
|
||
|
@@ -247,7 +249,6 @@ You can refine your search by selecting the task you're interested in (e.g., [te | |
| Task | ID | Description | Supported? | | ||
|--------------------------|----|-------------|------------| | ||
| [Document Question Answering](https://huggingface.co/tasks/document-question-answering) | `document-question-answering` | Answering questions on document images. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.DocumentQuestionAnsweringPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=document-question-answering&library=transformers.js) | | ||
| [Feature Extraction](https://huggingface.co/tasks/feature-extraction) | `feature-extraction` | Transforming raw data into numerical features that can be processed while preserving the information in the original dataset. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.FeatureExtractionPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=feature-extraction&library=transformers.js) | | ||
| [Image-to-Text](https://huggingface.co/tasks/image-to-text) | `image-to-text` | Output text from a given image. | ✅ [(docs)](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.ImageToTextPipeline)<br>[(models)](https://huggingface.co/models?pipeline_tag=image-to-text&library=transformers.js) | | ||
| [Text-to-Image](https://huggingface.co/tasks/text-to-image) | `text-to-image` | Generates images from input text. | ❌ | | ||
| [Visual Question Answering](https://huggingface.co/tasks/visual-question-answering) | `visual-question-answering` | Answering open-ended questions based on an image. | ❌ | | ||
|
@@ -294,6 +295,7 @@ You can refine your search by selecting the task you're interested in (e.g., [te | |
1. **[DiT](https://huggingface.co/docs/transformers/model_doc/dit)** (from Microsoft Research) released with the paper [DiT: Self-supervised Pre-training for Document Image Transformer](https://arxiv.org/abs/2203.02378) by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei. | ||
1. **[Donut](https://huggingface.co/docs/transformers/model_doc/donut)** (from NAVER), released together with the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park. | ||
1. **[DPT](https://huggingface.co/docs/transformers/master/model_doc/dpt)** (from Intel Labs) released with the paper [Vision Transformers for Dense Prediction](https://arxiv.org/abs/2103.13413) by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun. | ||
1. **[EfficientNet](https://huggingface.co/docs/transformers/model_doc/efficientnet)** (from Google Brain) released with the paper [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946) by Mingxing Tan, Quoc V. Le. | ||
1. **[ELECTRA](https://huggingface.co/docs/transformers/model_doc/electra)** (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning. | ||
1. **[ESM](https://huggingface.co/docs/transformers/model_doc/esm)** (from Meta AI) are transformer protein language models. **ESM-1b** was released with the paper [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118) by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. **ESM-1v** was released with the paper [Language models enable zero-shot prediction of the effects of mutations on protein function](https://doi.org/10.1101/2021.07.09.450648) by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. **ESM-2 and ESMFold** were released with the paper [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902) by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives. | ||
1. **[Falcon](https://huggingface.co/docs/transformers/model_doc/falcon)** (from Technology Innovation Institute) by Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme. | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,6 +7,6 @@ npm i @xenova/transformers | |
Alternatively, you can use it in vanilla JS, without any bundler, by using a CDN or static hosting. For example, using [ES Modules](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules), you can import the library with: | ||
```html | ||
<script type="module"> | ||
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected].0'; | ||
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected].1'; | ||
</script> | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,6 @@ | ||
|
||
|
||
By default, Transformers.js uses [hosted pretrained models](https://huggingface.co/models?library=transformers.js) and [precompiled WASM binaries](https://cdn.jsdelivr.net/npm/@xenova/[email protected].0/dist/), which should work out-of-the-box. You can customize this as follows: | ||
By default, Transformers.js uses [hosted pretrained models](https://huggingface.co/models?library=transformers.js) and [precompiled WASM binaries](https://cdn.jsdelivr.net/npm/@xenova/[email protected].1/dist/), which should work out-of-the-box. You can customize this as follows: | ||
|
||
|
||
### Settings | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.