MLHEP2019 MLHEP'19 slides and notebooks Seminars: Day 1: Figures of Merit, overfitting (MLE vs MAP vs AP) Day 2: Ensembles of models; bagging, boosting, random forest Clustering Day 3: Computing gradient by hand. Pytorch Convolutional Neural Networks ; Model Zoo: Day 4: Bayesian 2 Day 5 Learning to Pivot: toy example 1: toy example 2: toy example 3: SUSY exercise: Language modeling Tracking Day 6 Introductory example 1 : Introductory example 2 : Practice : GANs 1 GANs 2 GANs 3 Day 8 Black-Box: ABO: AVO: NN optimisation 1-scikit-search: 2-skorch: 3-bayesian_optimization: 4-skorch_comet: 5-skorch_skopt_comet: Independence of NN classifier from a continuous parameter: