forked from apache/datafusion-comet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* feat: Support Variance * Add StatisticsType in expr.poto * add explainPlan info and fix fmt * remove iunnecessary cast * remove unused import --------- Co-authored-by: Huaxin Gao <[email protected]>
- Loading branch information
1 parent
29067bb
commit 6887239
Showing
7 changed files
with
392 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -34,3 +34,4 @@ pub mod subquery; | |
pub mod sum_decimal; | ||
pub mod temporal; | ||
mod utils; | ||
pub mod variance; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,256 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! Defines physical expressions that can evaluated at runtime during query execution | ||
use std::{any::Any, sync::Arc}; | ||
|
||
use crate::execution::datafusion::expressions::{stats::StatsType, utils::down_cast_any_ref}; | ||
use arrow::{ | ||
array::{ArrayRef, Float64Array}, | ||
datatypes::{DataType, Field}, | ||
}; | ||
use datafusion::logical_expr::Accumulator; | ||
use datafusion_common::{downcast_value, DataFusionError, Result, ScalarValue}; | ||
use datafusion_physical_expr::{expressions::format_state_name, AggregateExpr, PhysicalExpr}; | ||
|
||
/// VAR_SAMP and VAR_POP aggregate expression | ||
/// The implementation mostly is the same as the DataFusion's implementation. The reason | ||
/// we have our own implementation is that DataFusion has UInt64 for state_field `count`, | ||
/// while Spark has Double for count. Also we have added `null_on_divide_by_zero` | ||
/// to be consistent with Spark's implementation. | ||
#[derive(Debug)] | ||
pub struct Variance { | ||
name: String, | ||
expr: Arc<dyn PhysicalExpr>, | ||
stats_type: StatsType, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl Variance { | ||
/// Create a new VARIANCE aggregate function | ||
pub fn new( | ||
expr: Arc<dyn PhysicalExpr>, | ||
name: impl Into<String>, | ||
data_type: DataType, | ||
stats_type: StatsType, | ||
null_on_divide_by_zero: bool, | ||
) -> Self { | ||
// the result of variance just support FLOAT64 data type. | ||
assert!(matches!(data_type, DataType::Float64)); | ||
Self { | ||
name: name.into(), | ||
expr, | ||
stats_type, | ||
null_on_divide_by_zero, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateExpr for Variance { | ||
/// Return a reference to Any that can be used for downcasting | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn field(&self) -> Result<Field> { | ||
Ok(Field::new(&self.name, DataType::Float64, true)) | ||
} | ||
|
||
fn create_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(VarianceAccumulator::try_new( | ||
self.stats_type, | ||
self.null_on_divide_by_zero, | ||
)?)) | ||
} | ||
|
||
fn create_sliding_accumulator(&self) -> Result<Box<dyn Accumulator>> { | ||
Ok(Box::new(VarianceAccumulator::try_new( | ||
self.stats_type, | ||
self.null_on_divide_by_zero, | ||
)?)) | ||
} | ||
|
||
fn state_fields(&self) -> Result<Vec<Field>> { | ||
Ok(vec![ | ||
Field::new( | ||
format_state_name(&self.name, "count"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new( | ||
format_state_name(&self.name, "mean"), | ||
DataType::Float64, | ||
true, | ||
), | ||
Field::new(format_state_name(&self.name, "m2"), DataType::Float64, true), | ||
]) | ||
} | ||
|
||
fn expressions(&self) -> Vec<Arc<dyn PhysicalExpr>> { | ||
vec![self.expr.clone()] | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
} | ||
|
||
impl PartialEq<dyn Any> for Variance { | ||
fn eq(&self, other: &dyn Any) -> bool { | ||
down_cast_any_ref(other) | ||
.downcast_ref::<Self>() | ||
.map(|x| { | ||
self.name == x.name && self.expr.eq(&x.expr) && self.stats_type == x.stats_type | ||
}) | ||
.unwrap_or(false) | ||
} | ||
} | ||
|
||
/// An accumulator to compute variance | ||
#[derive(Debug)] | ||
pub struct VarianceAccumulator { | ||
m2: f64, | ||
mean: f64, | ||
count: f64, | ||
stats_type: StatsType, | ||
null_on_divide_by_zero: bool, | ||
} | ||
|
||
impl VarianceAccumulator { | ||
/// Creates a new `VarianceAccumulator` | ||
pub fn try_new(s_type: StatsType, null_on_divide_by_zero: bool) -> Result<Self> { | ||
Ok(Self { | ||
m2: 0_f64, | ||
mean: 0_f64, | ||
count: 0_f64, | ||
stats_type: s_type, | ||
null_on_divide_by_zero, | ||
}) | ||
} | ||
|
||
pub fn get_count(&self) -> f64 { | ||
self.count | ||
} | ||
|
||
pub fn get_mean(&self) -> f64 { | ||
self.mean | ||
} | ||
|
||
pub fn get_m2(&self) -> f64 { | ||
self.m2 | ||
} | ||
} | ||
|
||
impl Accumulator for VarianceAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::from(self.count), | ||
ScalarValue::from(self.mean), | ||
ScalarValue::from(self.m2), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let arr = downcast_value!(&values[0], Float64Array).iter().flatten(); | ||
|
||
for value in arr { | ||
let new_count = self.count + 1.0; | ||
let delta1 = value - self.mean; | ||
let new_mean = delta1 / new_count + self.mean; | ||
let delta2 = value - new_mean; | ||
let new_m2 = self.m2 + delta1 * delta2; | ||
|
||
self.count += 1.0; | ||
self.mean = new_mean; | ||
self.m2 = new_m2; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let arr = downcast_value!(&values[0], Float64Array).iter().flatten(); | ||
|
||
for value in arr { | ||
let new_count = self.count - 1.0; | ||
let delta1 = self.mean - value; | ||
let new_mean = delta1 / new_count + self.mean; | ||
let delta2 = new_mean - value; | ||
let new_m2 = self.m2 - delta1 * delta2; | ||
|
||
self.count -= 1.0; | ||
self.mean = new_mean; | ||
self.m2 = new_m2; | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
let counts = downcast_value!(states[0], Float64Array); | ||
let means = downcast_value!(states[1], Float64Array); | ||
let m2s = downcast_value!(states[2], Float64Array); | ||
|
||
for i in 0..counts.len() { | ||
let c = counts.value(i); | ||
if c == 0_f64 { | ||
continue; | ||
} | ||
let new_count = self.count + c; | ||
let new_mean = self.mean * self.count / new_count + means.value(i) * c / new_count; | ||
let delta = self.mean - means.value(i); | ||
let new_m2 = self.m2 + m2s.value(i) + delta * delta * self.count * c / new_count; | ||
|
||
self.count = new_count; | ||
self.mean = new_mean; | ||
self.m2 = new_m2; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
let count = match self.stats_type { | ||
StatsType::Population => self.count, | ||
StatsType::Sample => { | ||
if self.count > 0.0 { | ||
self.count - 1.0 | ||
} else { | ||
self.count | ||
} | ||
} | ||
}; | ||
|
||
Ok(ScalarValue::Float64(match self.count { | ||
count if count == 0.0 => None, | ||
count if count == 1.0 => { | ||
if let StatsType::Population = self.stats_type { | ||
Some(0.0) | ||
} else if self.null_on_divide_by_zero { | ||
None | ||
} else { | ||
Some(f64::NAN) | ||
} | ||
} | ||
_ => Some(self.m2 / count), | ||
})) | ||
} | ||
|
||
fn size(&self) -> usize { | ||
std::mem::size_of_val(self) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.