Releases: hill-a/stable-baselines
Releases · hill-a/stable-baselines
Flexible Custom MLP Policies + bug fixes
- added support for storing model in file like object. (thanks to @erniejunior)
- fixed wrong image detection when using tensorboard logging with DQN
- fixed bug in ppo2 when passing non callable lr after loading
- fixed tensorboard logging in ppo2 when nminibatches=1
- added early stoppping via callback return value (@erniejunior)
- added more flexible custom mlp policies (@erniejunior)
Video Recorder
- added VecVideoRecorder to record mp4 videos from environment.
Hotfix PPO2
- Hotfix for ppo2, the wrong placeholder was used for the value function
Note: this bug was present since v1.0, so we recommend to update to the latest version of stable-baselines
New VecEnv Features
- added
async_eigen_decomp
parameter for ACKTR and set it toFalse
by default (remove deprecation warnings) - added methods for calling env methods/setting attributes inside a VecEnv (thanks to @bjmuld)
- updated gym minimum version
Contributors (since v2.0.0):
Thanks to @bjmuld @iambenzo @iandanforth @r7vme @brendenpetersen @huvar
Clean up dependencies + bug fix
- fixed MpiAdam synchronization issue in PPO1 (thanks to @brendenpetersen) issue #50
- fixed dependency issues (new mujoco-py requires a mujoco licence + gym broke MultiDiscrete space shape)
Bug fixes
WARNING: This version contains breaking changes, please read the full details
- added patch fix for equal function using gym.spaces.MultiDiscrete and gym.spaces.MultiBinary
- fixes for DQN action_probability
- re-added double DQN + refactored DQN policies breaking changes
- replaced async with async_eigen_decomp in ACKTR/KFAC for python 3.7 compatibility
- removed action clipping for prediction of continuous actions (see issue #36)
- fixed NaN issue due to clipping the continuous action in the wrong place (issue #36)
Tensorboard, refactoring and bug fixes
WARNING: This version contains breaking changes, please read the full details
- Renamed DeepQ to DQN breaking changes
- Renamed DeepQPolicy to DQNPolicy breaking changes
- fixed DDPG behavior breaking changes
- changed default policies for DDPG, so that DDPG now works correctly breaking changes
- added more documentation (some modules from common).
- added doc about using custom env
- added Tensorboard support for A2C, ACER, ACKTR, DDPG, DeepQ, PPO1, PPO2 and TRPO
- added episode reward to Tensorboard
- added documentation for Tensorboard usage
- added Identity for Box action space
- fixed render function ignoring parameters when using wrapped environments
- fixed PPO1 and TRPO done values for recurrent policies
- fixed image normalization not occurring when using images
- updated VecEnv objects for the new Gym version
- added test for DDPG
- refactored DQN policies
- added registry for policies, can be passed as string to the agent
- added documentation for custom policies + policy registration
- fixed numpy warning when using DDPG Memory
- fixed DummyVecEnv not copying the observation array when stepping and resetting
- added pre-built docker images + installation instructions
- added
deterministic
argument in the predict function - added assert in PPO2 for recurrent policies
- fixed predict function to handle both vectorized and unwrapped environment
- added input check to the predict function
- refactored ActorCritic models to reduce code duplication
- refactored Off Policy models (to begin HER and replay_buffer refactoring)
- added tests for auto vectorization detection
- fixed render function, to handle positional arguments
Bug fixes and documentation
- added html documentation using sphinx + integration with read the docs
- cleaned up README + typos
- fixed normalization for DQN with images
- fixed DQN identity test
Refactored Stable Baselines
- refactored A2C, ACER, ACTKR, DDPG, DeepQ, GAIL, TRPO, PPO1 and PPO2 under a single constant class
- added callback to refactored algorithm training
- added saving and loading to refactored algorithms
- refactored ACER, DDPG, GAIL, PPO1 and TRPO to fit with A2C, PPO2 and ACKTR policies
- added new policies for most algorithms (Mlp, MlpLstm, MlpLnLstm, Cnn, CnnLstm and CnnLnLstm)
- added dynamic environment switching (so continual RL learning is now feasible)
- added prediction from observation and action probability from observation for all the algorithms
- fixed graphs issues, so models wont collide in names
- fixed behavior_clone weight loading for GAIL
- fixed Tensorflow using all the GPU VRAM
- fixed models so that they are all compatible with vectorized environments
- fixed
set_global_seed
to updategym.spaces
's random seed - fixed PPO1 and TRPO performance issues when learning identity function
- added new tests for loading, saving, continuous actions and learning the identity function
- fixed DQN wrapping for atari
- added saving and loading for Vecnormalize wrapper
- added automatic detection of action space (for the policy network)
- fixed ACER buffer with constant values assuming n_stack=4
- fixed some RL algorithms not clipping the action to be in the action_space, when using
gym.spaces.Box
- refactored algorithms can take either a
gym.Environment
or astr
(if the environment name is registered) - Hoftix in ACER (compared to v1.0.0)
Future Work :
- Finish refactoring HER
- Refactor ACKTR and ACER for continuous implementation