Skip to content

MNIST Digit Classification Using Stacked Autoencoder And TensorFlow

Notifications You must be signed in to change notification settings

hassanzadeh/TensorFlowDeepAutoencoder

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Autoencoder with TensorFlow

Some First Layer Filters

A selection of first layer weight filters learned during the pretraining

Introduction

The purpose of this repo is to explore the functionality of Google's recently open-sourced "sofware library for numerical computation using data flow graphs", TensorFlow. We use the library to train a deep autoencoder on the MNIST digit data set. For background and a similar implementation using Theano see the tutorial at http://www.deeplearning.net/tutorial/SdA.html.

The main training code can be found in autoencoder.py along with the AutoEncoder class that creates and manages the Variables and Tensors used.

Docker Setup (CPU version only for the time being)

In order to avoid platform issues it's highly encouraged that you run the example code in a Docker container. Follow the Docker installation instructions on the website. Then run:

$ git clone https://github.com/cmgreen210/TensorFlowDeepAutoencoder
$ cd TensorFlowDeepAutoencoder
$ docker build -t tfdae -f cpu/Dockerfile .
$ docker run -it -p 80:6006 tfdae python run.py

Navigate to http://localhost:80 to explore TensorBoard and view the training progress.

TensorBoard Histograms

View of TensorBoard's display of weight and bias parameter progress.

## Customizing You can play around with the run options, including the neural net size and shape, input corruption, learning rates, etc. in [flags.py](https://github.com/cmgreen210/TensorFlowDeepAutoencoder/blob/master/code/ae/utils/flags.py).

Old Setup

It is expected that Python2.7 is installed and your default python version.

Ubuntu/Linux

$ git clone https://github.com/cmgreen210/TensorFlowDeepAutoencoder
$ cd TensorFlowDeepAutoencoder
$ sudo chmod +x setup_linux
$ sudo ./setup_linux  # If you want GPU version specify -g or --gpu
$ source venv/bin/activate 

Mac OS X

$ git clone https://github.com/cmgreen210/TensorFlowDeepAutoencoder
$ cd TensorFlowDeepAutoencoder
$ sudo chmod +x setup_mac
$ sudo ./setup_mac
$ source venv/bin/activate 

Run

To run the default example execute the following command. NOTE: this will take a very long time if you are running on a CPU as opposed to a GPU

$ python code/run.py

Navigate to http://localhost:6006 to explore TensorBoard and view training progress.

TensorBoard Histograms

View of TensorBoard's display of weight and bias parameter progress.

## Customizing You can play around with the run options, including the neural net size and shape, input corruption, learning rates, etc. in [flags.py](https://github.com/cmgreen210/TensorFlowDeepAutoencoder/blob/master/code/ae/utils/flags.py).

About

MNIST Digit Classification Using Stacked Autoencoder And TensorFlow

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.9%
  • Shell 3.1%