Skip to content

Commit

Permalink
Merge pull request #3 from wlegrand91/main
Browse files Browse the repository at this point in the history
Notebook for processing .dh files
  • Loading branch information
harmsm authored Aug 6, 2024
2 parents cebe6b4 + c50a35f commit 46cc0cd
Show file tree
Hide file tree
Showing 2 changed files with 218 additions and 0 deletions.
64 changes: 64 additions & 0 deletions notebooks/read_heats.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@

import pandas as pd

def read_heats_file(dh_file,uncertainty,output_file):
"""
Read the heats file written out by the MicroCal/Origin ITC analysis
package.
Parameters
----------
dh_file : str
name of .dh file written out by microcal software
output_file : str
name of file to write out data
uncertainty : float
user estimate of the uncertainty on each measured heat
Returns
-------
meta_data : dict
dictionary with metadata read from the top of the file: temperature
in Kelvin, cell and titrant concentrations in molar, and cell_volume
in microliters
"""

# Read data file
with open(dh_file,'r') as f:
lines = f.readlines()

# Grab third line and split on ","
meta = lines[2].split(",")

# Parse meta data on the third line
temperature = float(meta[0])
stationary_cell_conc = float(meta[1])*1e-3
titrant_syringe_conc = float(meta[2])*1e-3
cell_volume = float(meta[3])*1e3

# Split rows 6-end on "," and grab first and secon columns
shots = []
heats = []
for l in lines[5:]:
col = l.split(",")
shots.append(float(col[0]))
heats.append(float(col[1]))

# Make a list of uncertainty repeated once for every observed heat
heats_stdev = [uncertainty for i in range(len(heats))]

# Construct dataframe with data and write out a spreadsheet
to_df = {"injection":shots,
"heat":heats,
"heat_stdev":heats_stdev}
df = pd.DataFrame(to_df)
df.to_csv(output_file,index=False)

# Build dictionary holding meta data
out = {}
out["temperature"] = temperature
out["cell_conc"] = stationary_cell_conc
out["titrant_conc"] = titrant_syringe_conc
out["cell_volume"] = titrant_syringe_conc

return out
154 changes: 154 additions & 0 deletions notebooks/readheatstest.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 27,
"id": "decd9f42-6209-4a88-9a15-eb0b32cb2505",
"metadata": {},
"outputs": [],
"source": [
"\n",
"import pandas as pd\n",
"\n",
"def read_heats_file(dh_file,uncertainty,output_file):\n",
" \"\"\"\n",
" Read the heats file written out by the MicroCal/Origin ITC analysis\n",
" package.\n",
"\n",
" Parameters\n",
" ----------\n",
" dh_file : str\n",
" name of .dh file written out by microcal software\n",
" output_file : str\n",
" name of file to write out data\n",
" uncertainty : float\n",
" user estimate of the uncertainty on each measured heat\n",
"\n",
" Returns\n",
" -------\n",
" meta_data : dict\n",
" dictionary with metadata read from the top of the file: temperature\n",
" in Kelvin, cell and titrant concentrations in molar, and cell_volume\n",
" in microliters\n",
" \"\"\"\n",
"\n",
" # Read data file\n",
" with open(dh_file,'r') as f:\n",
" lines = f.readlines()\n",
"\n",
" # Grab third line and split on \",\"\n",
" meta = lines[2].split(\",\")\n",
"\n",
" # Parse meta data on the third line\n",
" temperature = float(meta[0])\n",
" stationary_cell_conc = float(meta[1])*1e-3\n",
" titrant_syringe_conc = float(meta[2])*1e-3\n",
" cell_volume = float(meta[3])*1e3\n",
" \n",
" # Split rows 6-end on \",\" and grab first and secon columns\n",
" shots = []\n",
" heats = []\n",
" for l in lines[5:]:\n",
" col = l.split(\",\")\n",
" shots.append(float(col[0]))\n",
" heats.append(float(col[1]))\n",
"\n",
" # Make a list of uncertainty repeated once for every observed heat\n",
" heats_stdev = [uncertainty for i in range(len(heats))]\n",
"\n",
" # Construct dataframe with data and write out a spreadsheet\n",
" to_df = {\"injection\":shots,\n",
" \"heat\":heats,\n",
" \"heat_stdev\":heats_stdev}\n",
" df = pd.DataFrame(to_df)\n",
" df.to_csv(output_file,index=False)\n",
"\n",
" # Build dictionary holding meta data\n",
" out = {}\n",
" out[\"temperature\"] = temperature\n",
" out[\"cell_conc\"] = stationary_cell_conc\n",
" out[\"titrant_conc\"] = titrant_syringe_conc\n",
" out[\"cell_volume\"] = titrant_syringe_conc\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "3cb1902e-ad74-482a-b9a9-86b676fe6698",
"metadata": {},
"outputs": [],
"source": [
"import shutil\n",
"## Define input directory that contains .dh files\n",
"## Define output directory to put .csv files in\n",
"\n",
"## Running this script twice will overwrite any previous runs of the code\n",
"\n",
"inputdir = r\"C:/Users/willi/linkage/notebooks/rawdata\"\n",
"outputdir = r\"C:/Users/willi/linkage/notebooks/processed_data\" # Specify your desired output directory\n",
"\n",
"def iterate_dh_to_csv(inputdir, outputdir):\n",
" for dirpath, dirnames, filenames in os.walk(inputdir):\n",
" for filename in filenames:\n",
" if filename.lower().endswith('.dh'):\n",
" filepath = os.path.join(dirpath, filename)\n",
" \n",
" output_filepath = os.path.splitext(filepath)[0] + \".csv\"\n",
" read_heats_file(filepath, 0, output_filepath)\n",
"\n",
" # Calculate the relative path of the .csv file within the inputdir\n",
" rel_path = os.path.relpath(output_filepath, inputdir)\n",
"\n",
" # Create the corresponding directory structure in the outputdir\n",
" output_dirpath = os.path.join(outputdir, os.path.dirname(rel_path))\n",
" os.makedirs(output_dirpath, exist_ok=True)\n",
"\n",
" # Copy the .csv file to the new location\n",
" shutil.copy2(output_filepath, output_dirpath)\n",
"\n",
"\n",
"\n",
"iterate_and_process(inputdir, outputdir)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e905fab-5dbb-481f-aa71-3160c51d7c3e",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "f665fa30-63e2-4eb7-bc6e-86aaadd6e681",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

0 comments on commit 46cc0cd

Please sign in to comment.