-
Notifications
You must be signed in to change notification settings - Fork 458
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit aeb60b0
Showing
49 changed files
with
3,861 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
*.pyc | ||
ckt_logs | ||
backup |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
* | ||
!README.md | ||
!.gitignore |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
**Data** | ||
|
||
1. Download our preprocessed char-CNN-RNN text embeddings for [birds](https://drive.google.com/open?id=0B3y_msrWZaXLT1BZdVdycDY5TEE) and [flowers](https://drive.google.com/open?id=0B3y_msrWZaXLaUc0UXpmcnhaVmM) and save them to `Data/`. | ||
- [Optional] Follow the instructions [here](https://github.com/reedscot/icml2016) to download the pretrained char-CNN-RNN text encoders and extract your own text embeddings. | ||
2. Download the [birds](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) and [flowers](http://www.robots.ox.ac.uk/~vgg/data/flowers/102/) image data. Extract them to `Data/birds/` and `Data/flowers/`, respectively. | ||
3. Preprocess images. | ||
- For birds: `python ./misc/preprocess_birds.py` | ||
- For flowers: `python ./misc/preprocess_flowers.py` | ||
|
||
|
||
**Skip-thought Vocabulary** | ||
- [Download](https://github.com/ryankiros/skip-thoughts) vocabulary for skip-thought vectors to `Data/`. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2016 hanzhanggit | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# StackGAN | ||
Code for reproducing main results in the paper [StackGAN: Text to Photo-realistic Image Synthesis | ||
with Stacked Generative Adversarial Networks](https://arxiv.org/pdf/1612.03242v1.pdf) by Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Xiaogang Wang, Dimitris Metaxas. | ||
|
||
<img src="examples/framework.png" width="700px" height="370px"/> | ||
|
||
|
||
### Dependencies | ||
[TensorFlow](https://www.tensorflow.org/get_started/os_setup) | ||
|
||
[Optional] [Torch](http://torch.ch/docs/getting-started.html#_) is needed, if use the pre-trained char-CNN-RNN text encoder. | ||
|
||
[Optional] [skip-thought](https://github.com/ryankiros/skip-thoughts) is needed, if use the skip-thought text encoder. | ||
|
||
In addition, please add the project folder to PYTHONPATH and `pip install` the following packages: | ||
- `prettytensor` | ||
- `progressbar` | ||
- `python-dateutil` | ||
- `easydict` | ||
- `pandas` | ||
- `torchfile` | ||
|
||
|
||
|
||
**Data** | ||
|
||
1. Download our preprocessed char-CNN-RNN text embeddings for [birds](https://drive.google.com/open?id=0B3y_msrWZaXLT1BZdVdycDY5TEE) and [flowers](https://drive.google.com/open?id=0B3y_msrWZaXLaUc0UXpmcnhaVmM) and save them to `Data/`. | ||
- [Optional] Follow the instructions [reedscot/icml2016](https://github.com/reedscot/icml2016) to download the pretrained char-CNN-RNN text encoders and extract text embeddings. | ||
2. Download the [birds](http://www.vision.caltech.edu/visipedia/CUB-200-2011.html) and [flowers](http://www.robots.ox.ac.uk/~vgg/data/flowers/102/) image data. Extract them to `Data/birds/` and `Data/flowers/`, respectively. | ||
3. Preprocess images. | ||
- For birds: `python misc/preprocess_birds.py` | ||
- For flowers: `python misc/preprocess_flowers.py` | ||
|
||
|
||
|
||
**Training** | ||
- The steps to train a StackGAN model on the CUB dataset using our preprocessed data for birds. | ||
- Step 1: train Stage-I GAN (e.g., for 600 epochs) `python stageI/run_exp.py --cfg stageI/cfg/birds.yml --gpu 0` | ||
- Step 2: train Stage-II GAN (e.g., for another 600 epochs) `python stageII/run_exp.py --cfg stageII/cfg/birds.yml --gpu 1` | ||
- Change `birds.yml` to `flowers.yml` to train a StackGAN model on Oxford-102 dataset using our preprocessed data for flowers. | ||
- `*.yml` files are example configuration files for training/testing our models. | ||
- If you want to try your own datasets, [here](https://github.com/soumith/ganhacks) are some good tips about how to train GAN. Also, we encourage to try different hyper-parameters and architectures, especially for more complex datasets. | ||
|
||
|
||
|
||
**Pretrained Model** | ||
- [StackGAN for birds](https://drive.google.com/open?id=0B3y_msrWZaXLNUNKa3BaRjAyTzQ) trained from char-CNN-RNN text embeddings. Download and save it to `models/`. | ||
- [StackGAN for flowers](https://drive.google.com/open?id=0B3y_msrWZaXLX01FMC1JQW9vaFk) trained from char-CNN-RNN text embeddings. Download and save it to `models/`. | ||
- [StackGAN for birds](https://drive.google.com/open?id=0B3y_msrWZaXLZVNRNFg4d055Q1E) trained from skip-thought text embeddings. Download and save it to `models/` (Just used the same setting as the char-CNN-RNN. We assume better results can be achieved by playing with the hyper-parameters). | ||
|
||
|
||
|
||
**Run Demos** | ||
- Run `sh demo/flowers_demo.sh` to generate flower samples from sentences. The results will be saved to `Data/flowers/example_captions/`. (Need to [download](https://drive.google.com/file/d/0B0ywwgffWnLLZUt0UmQ1LU1oWlU/view) the char-CNN-RNN text encoder for flowers to `models/text_encoder/`. Note: this text encoder is provided by [reedscot/icml2016](https://github.com/reedscot/icml2016)). | ||
- Run `sh demo/birds_demo.sh` to generate bird samples from sentences. The results will be saved to `Data/birds/example_captions/`.(Need to [download](https://drive.google.com/file/d/0B0ywwgffWnLLU0F3UHA3NzFTNEE/view) the char-CNN-RNN text encoder for birds to `models/text_encoder/`. Note: this text encoder is provided by [reedscot/icml2016](https://github.com/reedscot/icml2016)). | ||
- Run `python demo/birds_skip_thought_demo.py --cfg demo/cfg/birds-skip-thought-demo.yml --gpu 2` to generate bird samples from sentences. The results will be saved to `Data/birds/example_captions-skip-thought/`. (Need to [download](https://github.com/ryankiros/skip-thoughts) vocabulary for skip-thought vectors to `Data/skipthoughts/`). | ||
|
||
Examples for birds (char-CNN-RNN embeddings), more on [youtube](https://youtu.be/93yaf_kE0Fg): | ||
![](examples/bird1.jpg) | ||
![](examples/bird2.jpg) | ||
![](examples/bird4.jpg) | ||
![](examples/bird3.jpg) | ||
|
||
|
||
Examples for flowers (char-CNN-RNN embeddings), more on [youtube](https://youtu.be/SuRyL5vhCIM): | ||
![](examples/flower1.jpg) | ||
![](examples/flower2.jpg) | ||
![](examples/flower3.jpg) | ||
![](examples/flower4.jpg) | ||
|
||
Save your favorite pictures generated by our models since the randomness from noise z and conditioning augmentation makes them creative enough to generate objects with different poses and viewpoints from the same discription :smiley: | ||
|
||
|
||
|
||
### Citing StackGAN | ||
If you find StackGAN useful in your research, please consider citing: | ||
|
||
``` | ||
@article{han2016stackgan, | ||
title={StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks}, | ||
author={Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaolei Huang and Xiaogang Wang and Dimitris Metaxas}, | ||
journal={arXiv:1612.03242}, | ||
year={2016} | ||
} | ||
``` | ||
|
||
|
||
**References** | ||
|
||
- Generative Adversarial Text-to-Image Synthesis [Paper](https://arxiv.org/abs/1605.05396) [Code](https://github.com/reedscot/icml2016) | ||
- Learning Deep Representations of Fine-grained Visual Descriptions [Paper](https://arxiv.org/abs/1605.05395) [Code](https://github.com/reedscot/cvpr2016) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
# | ||
# Extract text embeddings from the encoder | ||
# | ||
CUB_ENCODER=lm_sje_nc4_cub_hybrid_gru18_a1_c512_0.00070_1_10_trainvalids.txt_iter30000.t7 \ | ||
CAPTION_PATH=Data/birds/example_captions \ | ||
GPU=0 \ | ||
|
||
export CUDA_VISIBLE_DEVICES=${GPU} | ||
|
||
net_txt=models/text_encoder/${CUB_ENCODER} \ | ||
queries=${CAPTION_PATH}.txt \ | ||
filenames=${CAPTION_PATH}.t7 \ | ||
th demo/get_embedding.lua | ||
|
||
# | ||
# Generate image from text embeddings | ||
# | ||
python demo/demo.py \ | ||
--cfg demo/cfg/birds-demo.yml \ | ||
--gpu ${GPU} \ | ||
--caption_path ${CAPTION_PATH}.t7 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import prettytensor as pt | ||
import tensorflow as tf | ||
import numpy as np | ||
import scipy.misc | ||
import os | ||
import argparse | ||
from PIL import Image, ImageDraw, ImageFont | ||
|
||
from misc.config import cfg, cfg_from_file | ||
from misc.utils import mkdir_p | ||
from misc import skipthoughts | ||
from stageII.model import CondGAN | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser(description='Train a GAN network') | ||
parser.add_argument('--cfg', dest='cfg_file', | ||
help='optional config file', | ||
default=None, type=str) | ||
parser.add_argument('--gpu', dest='gpu_id', | ||
help='GPU device id to use [0]', | ||
default=-1, type=int) | ||
parser.add_argument('--caption_path', type=str, default=None, | ||
help='Path to the file with text sentences') | ||
# if len(sys.argv) == 1: | ||
# parser.print_help() | ||
# sys.exit(1) | ||
args = parser.parse_args() | ||
return args | ||
|
||
|
||
def sample_encoded_context(embeddings, model, bAugmentation=True): | ||
'''Helper function for init_opt''' | ||
# Build conditioning augmentation structure for text embedding | ||
# under different variable_scope: 'g_net' and 'hr_g_net' | ||
c_mean_logsigma = model.generate_condition(embeddings) | ||
mean = c_mean_logsigma[0] | ||
if bAugmentation: | ||
# epsilon = tf.random_normal(tf.shape(mean)) | ||
epsilon = tf.truncated_normal(tf.shape(mean)) | ||
stddev = tf.exp(c_mean_logsigma[1]) | ||
c = mean + stddev * epsilon | ||
else: | ||
c = mean | ||
return c | ||
|
||
|
||
def build_model(sess, embedding_dim, batch_size): | ||
model = CondGAN( | ||
lr_imsize=cfg.TEST.LR_IMSIZE, | ||
hr_lr_ratio=int(cfg.TEST.HR_IMSIZE/cfg.TEST.LR_IMSIZE)) | ||
|
||
embeddings = tf.placeholder( | ||
tf.float32, [batch_size, embedding_dim], | ||
name='conditional_embeddings') | ||
with pt.defaults_scope(phase=pt.Phase.test): | ||
with tf.variable_scope("g_net"): | ||
c = sample_encoded_context(embeddings, model) | ||
z = tf.random_normal([batch_size, cfg.Z_DIM]) | ||
fake_images = model.get_generator(tf.concat(1, [c, z])) | ||
with tf.variable_scope("hr_g_net"): | ||
hr_c = sample_encoded_context(embeddings, model) | ||
hr_fake_images = model.hr_get_generator(fake_images, hr_c) | ||
|
||
ckt_path = cfg.TEST.PRETRAINED_MODEL | ||
if ckt_path.find('.ckpt') != -1: | ||
print("Reading model parameters from %s" % ckt_path) | ||
saver = tf.train.Saver(tf.all_variables()) | ||
saver.restore(sess, ckt_path) | ||
else: | ||
print("Input a valid model path.") | ||
return embeddings, fake_images, hr_fake_images | ||
|
||
|
||
def drawCaption(img, caption): | ||
img_txt = Image.fromarray(img) | ||
# get a font | ||
fnt = ImageFont.truetype('Pillow/Tests/fonts/FreeMono.ttf', 50) | ||
# get a drawing context | ||
d = ImageDraw.Draw(img_txt) | ||
|
||
# draw text, half opacity | ||
d.text((10, 256), 'Stage-I', font=fnt, fill=(255, 255, 255, 255)) | ||
d.text((10, 512), 'Stage-II', font=fnt, fill=(255, 255, 255, 255)) | ||
if img.shape[0] > 832: | ||
d.text((10, 832), 'Stage-I', font=fnt, fill=(255, 255, 255, 255)) | ||
d.text((10, 1088), 'Stage-II', font=fnt, fill=(255, 255, 255, 255)) | ||
|
||
idx = caption.find(' ', 60) | ||
if idx == -1: | ||
d.text((256, 10), caption, font=fnt, fill=(255, 255, 255, 255)) | ||
else: | ||
cap1 = caption[:idx] | ||
cap2 = caption[idx+1:] | ||
d.text((256, 10), cap1, font=fnt, fill=(255, 255, 255, 255)) | ||
d.text((256, 60), cap2, font=fnt, fill=(255, 255, 255, 255)) | ||
|
||
return img_txt | ||
|
||
|
||
def save_super_images(sample_batchs, hr_sample_batchs, | ||
captions_batch, batch_size, | ||
startID, save_dir): | ||
if not os.path.isdir(save_dir): | ||
print('Make a new folder: ', save_dir) | ||
mkdir_p(save_dir) | ||
|
||
# Save up to 16 samples for each text embedding/sentence | ||
img_shape = hr_sample_batchs[0][0].shape | ||
for j in range(batch_size): | ||
padding = np.zeros(img_shape) | ||
row1 = [padding] | ||
row2 = [padding] | ||
# First row with up to 8 samples | ||
for i in range(np.minimum(8, len(sample_batchs))): | ||
lr_img = sample_batchs[i][j] | ||
hr_img = hr_sample_batchs[i][j] | ||
hr_img = (hr_img + 1.0) * 127.5 | ||
re_sample = scipy.misc.imresize(lr_img, hr_img.shape[:2]) | ||
row1.append(re_sample) | ||
row2.append(hr_img) | ||
row1 = np.concatenate(row1, axis=1) | ||
row2 = np.concatenate(row2, axis=1) | ||
superimage = np.concatenate([row1, row2], axis=0) | ||
|
||
# Second 8 samples with up to 8 samples | ||
if len(sample_batchs) > 8: | ||
row1 = [padding] | ||
row2 = [padding] | ||
for i in range(8, len(sample_batchs)): | ||
lr_img = sample_batchs[i][j] | ||
hr_img = hr_sample_batchs[i][j] | ||
hr_img = (hr_img + 1.0) * 127.5 | ||
re_sample = scipy.misc.imresize(lr_img, hr_img.shape[:2]) | ||
row1.append(re_sample) | ||
row2.append(hr_img) | ||
row1 = np.concatenate(row1, axis=1) | ||
row2 = np.concatenate(row2, axis=1) | ||
super_row = np.concatenate([row1, row2], axis=0) | ||
superimage2 = np.zeros_like(superimage) | ||
superimage2[:super_row.shape[0], | ||
:super_row.shape[1], | ||
:super_row.shape[2]] = super_row | ||
mid_padding = np.zeros((64, superimage.shape[1], 3)) | ||
superimage =\ | ||
np.concatenate([superimage, mid_padding, superimage2], axis=0) | ||
|
||
top_padding = np.zeros((128, superimage.shape[1], 3)) | ||
superimage =\ | ||
np.concatenate([top_padding, superimage], axis=0) | ||
|
||
fullpath = '%s/sentence%d.jpg' % (save_dir, startID + j) | ||
superimage = drawCaption(np.uint8(superimage), captions_batch[j]) | ||
scipy.misc.imsave(fullpath, superimage) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
if args.cfg_file is not None: | ||
cfg_from_file(args.cfg_file) | ||
if args.gpu_id != -1: | ||
cfg.GPU_ID = args.gpu_id | ||
if args.caption_path is not None: | ||
cfg.TEST.CAPTION_PATH = args.caption_path | ||
|
||
cap_path = cfg.TEST.CAPTION_PATH | ||
with open(cap_path) as f: | ||
captions = f.read().split('\n') | ||
captions_list = [cap for cap in captions if len(cap) > 0] | ||
print('Successfully load sentences from: ', cap_path) | ||
print('Total number of sentences:', len(captions_list)) | ||
# path to save generated samples | ||
save_dir = cap_path[:cap_path.find('.txt')] + '-skip-thought' | ||
|
||
if len(captions_list) > 0: | ||
# Load skipthoughts model and generate embeddings from text sentences | ||
print('Load skipthoughts as encoder:') | ||
model = skipthoughts.load_model() | ||
embeddings = skipthoughts.encode(model, captions_list, verbose=False) | ||
num_embeddings = len(embeddings) | ||
print('num_embeddings:', num_embeddings, embeddings.shape) | ||
batch_size = np.minimum(num_embeddings, cfg.TEST.BATCH_SIZE) | ||
|
||
# Build StackGAN and load the model | ||
config = tf.ConfigProto(allow_soft_placement=True) | ||
with tf.Session(config=config) as sess: | ||
with tf.device("/gpu:%d" % cfg.GPU_ID): | ||
embeddings_holder, fake_images_opt, hr_fake_images_opt =\ | ||
build_model(sess, embeddings.shape[-1], batch_size) | ||
|
||
count = 0 | ||
while count < num_embeddings: | ||
iend = count + batch_size | ||
if iend > num_embeddings: | ||
iend = num_embeddings | ||
count = num_embeddings - batch_size | ||
embeddings_batch = embeddings[count:iend] | ||
captions_batch = captions_list[count:iend] | ||
|
||
samples_batchs = [] | ||
hr_samples_batchs = [] | ||
# Generate up to 16 images for each sentence with | ||
# randomness from noise z and conditioning augmentation. | ||
for i in range(np.minimum(16, cfg.TEST.NUM_COPY)): | ||
hr_samples, samples =\ | ||
sess.run([hr_fake_images_opt, fake_images_opt], | ||
{embeddings_holder: embeddings_batch}) | ||
samples_batchs.append(samples) | ||
hr_samples_batchs.append(hr_samples) | ||
save_super_images(samples_batchs, | ||
hr_samples_batchs, | ||
captions_batch, | ||
batch_size, | ||
count, save_dir) | ||
count += batch_size | ||
|
||
print('Finish generating samples for %d sentences:' % num_embeddings) | ||
print('Example sentences:') | ||
for i in xrange(np.minimum(10, num_embeddings)): | ||
print('Sentence %d: %s' % (i, captions_list[i])) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
CONFIG_NAME: 'stageII' | ||
|
||
DATASET_NAME: 'birds' | ||
GPU_ID: 0 | ||
Z_DIM: 100 | ||
|
||
TEST: | ||
PRETRAINED_MODEL: './models/birds_model_164000.ckpt' | ||
BATCH_SIZE: 64 | ||
NUM_COPY: 8 | ||
|
||
GAN: | ||
EMBEDDING_DIM: 128 | ||
DF_DIM: 64 | ||
GF_DIM: 128 |
Oops, something went wrong.