Skip to content
forked from arq5x/lumpy-sv

lumpy: a general probabilistic framework for structural variant discovery

License

Notifications You must be signed in to change notification settings

hall-lab/lumpy-sv

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

For questions and discussion about LUMPY please visit the forum at:

https://groups.google.com/forum/#!forum/lumpy-discuss

LUMPY

A probabilistic framework for structural variant discovery.

Ryan M Layer, Colby Chiang, Aaron R Quinlan, and Ira M Hall. 2014. "LUMPY: a Probabilistic Framework for Structural Variant Discovery." Genome Biology 15 (6): R84. doi:10.1186/gb-2014-15-6-r84.

Table of Contents

  1. Quick start
  2. Installation
  3. LUMPY Express usage: Automated breakpoint detection for standard analyses.
  4. LUMPY (traditional) usage: Flexible and customizable breakpoint detection for advanced users.
  5. Example workflows
  6. Test data
  7. Troubleshooting

Quick start

Download and install

git clone --recursive https://github.com/arq5x/lumpy-sv.git
cd lumpy-sv
make
cp bin/* /usr/local/bin/.

Run LUMPY Express

lumpyexpress \
    -B my.bam \
    -S my.splitters.bam \
    -D my.discordants.bam \
    -o output.vcf

Installation

Requirements
Install
git clone --recursive [email protected]:arq5x/lumpy-sv.git
cd lumpy-sv
make
cp bin/* /usr/local/bin/.

LUMPY Express usage

Automated breakpoint detection for standard analyses.

usage:   lumpyexpress [options]

Required arguments

     -B FILE  coordinate-sorted BAM file(s) (comma separated)
     -S FILE  split reads BAM file(s) (comma separated)
     -D FILE  discordant reads BAM files(s) (comma separated)

Optional arguments

-o STR    output [fullBam.bam.vcf]
-x FILE   BED file to exclude
-P        output probability curves for each variant
-m INT    minimum sample weight for a call [4]
-r FLOAT  trim threshold [0]
-T DIR    temp directory [./output_prefix.XXXXXXXXXXXX]
-k        keep temporary files
-K FILE   path to lumpyexpress.config file
            (default: same directory as lumpyexpress)
-v        verbose
-h        show this message

Configuration

LUMPY Express runs several external program whose paths are specified in scripts/lumpyexpress.config. This config must reside in the same directory as lumpyexpress, or be specified explicitly with the -K flag.

The installation Makefile auto-generates a lumpyexpress.config file and places it in the "bin" directory.

Input

LUMPY Express expects BWA-MEM aligned BAM files as input. It automatically parses sample, library, and read group information using the @RG tags in the BAM header. Each BAM file is expected to contain exactly one sample.

The minimum input is a coordinate-sorted BAM file (-B), from which LUMPY Express extracts splitters and discordants using SAMBLASTER before running LUMPY. Optionally, users may supply coordinate-sorted splitter (-S) and discordant (-D) BAM files which will bypass SAMBLASTER extraction for faster analysis.

Output

LUMPY Express produces a VCF file according to VCF spec 4.2.

LUMPY (traditional) usage

Flexible and customizable breakpoint detection for advanced users.

usage:    lumpy [options]

Options

-g       Genome file (defines chromosome order)
-e       Show evidence for each call
-w       File read windows size (default 1000000)
-mw      minimum weight across all samples for a call
-msw     minimum per-sample weight for a call
-tt      trim threshold
-x       exclude file bed file
-t       temp file prefix, must be to a writeable directory
-P       output probability curve for each variant
-b       output as BEDPE instead of VCF

-sr      bam_file:<file name>,
         id:<sample name>,
       	 back_distance:<distance>,
         min_mapping_threshold:<mapping quality>,
         weight:<sample weight>,
         min_clip:<minimum clip length>,
         read_group:<string>

-pe      bam_file:<file name>,
         id:<sample name>,
         histo_file:<file name>,
         mean:<value>,
         stdev:<value>,
         read_length:<length>,
         min_non_overlap:<length>,
         discordant_z:<z value>,
         back_distance:<distance>,
         min_mapping_threshold:<mapping quality>,
         weight:<sample weight>,
         read_group:<string>

-bedpe   bedpe_file:<bedpe file>,
         id:<sample name>,
         weight:<sample weight>

Example workflows

Pre-processing

We recommend aligning data with SpeedSeq, which performs BWA-MEM alignment, marks duplicates and extracts split and discordant read-pairs.

speedseq align -R "@RG\tID:id\tSM:sample\tLB:lib" \
    human_g1k_v37.fasta \
    sample.1.fq \
    sample.2.fq

Otherwise, data may be aligned with BWA-MEM.

# Align the data
bwa mem human_g1k_v37.fasta sample.1.fq sample.2.fq \
    | samtools view -S -b - \
    > sample.bam

# Extract the discordant paired-end alignments.
samtools view -b -F 1294 sample.bam > sample.discordants.unsorted.bam

# Extract the split-read alignments
samtools view -h sample.bam \
    | scripts/extractSplitReads_BwaMem -i stdin \
    | samtools view -Sb - \
    > sample.splitters.unsorted.bam

# Sort both alignments
samtools sort sample.discordants.unsorted.bam sample.discordants
samtools sort sample.splitters.unsorted.bam sample.splitters

Running LUMPY

LUMPY has two distinct execution alternatives. LUMPY Express is a simplified wrapper for standard analyses. LUMPY (traditional) is more customizable, for advanced users and specialized experiments.

LUMPY Express
  • Run LUMPY Express on a single sample with pre-extracted splitters and discordants

    lumpyexpress \
        -B sample.bam \
        -S sample.splitters.bam \
        -D sample.discordants.bam \
        -o sample.vcf
    
  • Run LUMPY Express jointly on multiple samples with pre-extracted splitters and discordants

    lumpyexpress \
        -B sample1.bam,sample2.bam,sample3.bam \
        -S sample1.splitters.bam,sample2.splitters.bam,sample3.splitters.bam \
        -D sample1.discordants.bam,sample2.discordants.bam,sample3.discordants.bam \
        -o multi_sample.vcf
    
  • Run LUMPY Express on a tumor-normal pair

    lumpyexpress \
        -B tumor.bam,normal.bam \
        -S tumor.splitters.bam,normal.splitters.bam \
        -D tumor.discordants.bam,normal.discordants.bam \
        -o tumor_normal.vcf
    
LUMPY (traditional)

First, generate empirical insert size statistics on each library in the BAM file

samtools view -r readgroup1 sample.bam \
    | tail -n+100000 \
    | scripts/pairend_distro.py \
    -r 101 \
    -X 4 \
    -N 10000 \
    -o sample.lib1.histo

The above script (scripts/pairend_distro.py) will display mean and stdev to screen. For these examples we will assume the mean is 500 and the stdev is 50.

  • Run LUMPY with paired-end and split-reads.

    lumpy \
        -mw 4 \
        -tt 0 \
        -pe id:sample,bam_file:sample.discordants.bam,histo_file:sample.lib1.histo,mean:500,stdev:50,read_length:101,min_non_overlap:101,discordant_z:5,back_distance:10,weight:1,min_mapping_threshold:20 \
        -sr id:sample,bam_file:sample.splitters.bam,back_distance:10,weight:1,min_mapping_threshold:20 \
        > sample.vcf
    
  • Run LUMPY on a BAM file with multiple libraries.

    lumpy \
        -mw 4 \
        -tt 0 \
        -pe id:sample,read_group:rg1,bam_file:sample.discordants.bam,histo_file:sample.lib1.histo,mean:500,stdev:50,read_length:101,min_non_overlap:101,discordant_z:5,back_distance:10,weight:1,min_mapping_threshold:20 \
        -pe id:sample,read_group:rg2,bam_file:sample.discordants.bam,histo_file:sample.lib2.histo,mean:500,stdev:50,read_length:101,min_non_overlap:101,discordant_z:5,back_distance:10,weight:1,min_mapping_threshold:20 \
        -sr id:sample,bam_file:sample.splitters.bam,back_distance:10,weight:1,min_mapping_threshold:20 \
        > sample.vcf
    
  • Run LUMPY on multiple samples with multiple libraries.

    lumpy \
        -mw 4 \
        -tt 0 \
        -pe id:sample1,bam_file:sample1.discordants.bam,read_group:rg1,read_group:rg2,histo_file:sample1.lib1.histo,mean:500,stdev:50,read_length:101,min_non_overlap:101,discordant_z:5,back_distance:10,weight:1,min_mapping_threshold:20 \
        -pe id:sample1,bam_file:sample1.discordants.bam,read_group:rg3,histo_file:sample1.lib2.histo,mean:500,stdev:50,read_length:101,min_non_overlap:101,discordant_z:5,back_distance:10,weight:1,min_mapping_threshold:20 \
        -pe id:sample2,bam_file:sample2.discordants.bam,read_group:rg4,histo_file:sample2.lib1.histo,mean:500,stdev:50,read_length:101,min_non_overlap:101,discordant_z:5,back_distance:10,weight:1,min_mapping_threshold:20 \
        -sr id:sample1,bam_file:sample1.splitters.bam,back_distance:10,weight:1,min_mapping_threshold:20 \
        -sr id:sample2,bam_file:sample2.splitters.bam,back_distance:10,weight:1,min_mapping_threshold:20 \
        > multi_sample.vcf
    
  • Run LUMPY with regions of very high coverage excluded.
    We can direct lumpy to ignore certain regions by using the exclude region option. In this example we find and then exclude regions that have very high coverage. First we use the get_coverages.py script to find the min, max, and mean coverages of the the sr and pe bam files, and to create coverage profiles for both files.

    python ../scripts/get_coverages.py \
        sample.pe.sort.bam \
    sample.sr.sort.bam
    # sample.pe.sort.bam.coverage  min:1   max:14  mean(non-zero):2.35557521272
    # sample.sr.sort.bam.coverage  min:1   max:7   mean(non-zero):1.08945936729
    

    From this output, we will choose to exclude regions that have more than 10x coverage. To create the exclude file we will use the get_exclude_regions.py script to create the exclude.bed file

    python ../scripts/get_exclude_regions.py \
        10 \
    exclude.bed \
    sample.pe.sort.bam \
    sample.sr.sort.bam
    

    We now rerun lumpy with the exclude (-x) option

    lumpy \
        -mw 4 \
        -tt 0.0 \
        -x exclude.bed \
        -pe bam_file:sample.discordants.bam,histo_file:sample.pe.histo,mean:500,stdev:50,read_length:101,min_non_overlap:101,discordant_z:5,back_distance:10,weight:1,id:sample,min_mapping_threshold:1 \
        -sr bam_file:sample.sr.sort.bam,back_distance:10,weight:1,id:sample,min_mapping_threshold:1 \
        > sample.exclude.vcf
    

Post-processing

SVTyper can call genotypes on LUMPY output VCF files using a Bayesian maximum likelihood algorithm.

svtyper \      
    -B sample.bam \
    -S sample.splitters.bam \
    -i sample.vcf
    > sample.gt.vcf

Test data

The test/test.sh script executes lumpy against several simulated data sets and compares the results to the known correct result. The sample data sets can be found at http://layerlab.org/lumpy/data.tar.gz. This tar ball should be extracted into the top-level lumpy directory. The script test/test.sh checks for the the existence of this directory before running LUMPY.

Troubleshooting

All of the bam files that lumpy processes must be position sorted. To check if your bams are sorted correctly, use the check_sorting.py script

python ../scripts/check_sorting.py \
    pe.pos_sorted.bam \
    sr.pos_sorted.bam \
    pe.name_sorted.bam
# pe.pos_sorted.bam
# in order
# sr.pos_sorted.bam
# in order
# pe.name_sorted.bam
# out of order:   chr10   102292476   occurred after   chr10   102292893

About

lumpy: a general probabilistic framework for structural variant discovery

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C 77.2%
  • C++ 21.0%
  • Python 1.0%
  • Shell 0.3%
  • Makefile 0.3%
  • CMake 0.2%