Skip to content

Latest commit

 

History

History
41 lines (37 loc) · 1.23 KB

README.md

File metadata and controls

41 lines (37 loc) · 1.23 KB

learing

##LAD

简介

假设有如下的一组分句

  • I like to eat broccoli and bananas.
  • I ate a banana and spinach smoothie for breakfast.
  • Chinchillas and kittens are cute.
  • My sister adopted a kitten yesterday.
  • Look at this cute hamster munching on a piece of broccoli.

那什么是LDA呢?LDA能够发掘出分句包含的主题。假设上面的分句包含2个主题,LDA能够得到如下的产出:

  • 分句1和分句2 100%属于主题A
  • 分句3和分句4 100%属于主题B
  • 分句5 60%输入主题A,40%属于主题B
  • 主题A:30% 30% broccoli, 15% bananas, 10% breakfast, 10% munt topic A to be about food)
  • 主题B:30% 30% broccoli, 15% bananas, 10% breakfast, 10% munt topic A to be about food)

LDA是如何实现的呢?

LDA模型

更具体的, 1 决定文档使用的N个Term 2 决定文档包含的主题数目,假设1/3食物和2/3宠物 3 通过如下步骤生成第i个term w_i:

选择Topic 选择词语

Sim

  • Device(s)设备
    • 设备标示:ICCID, MSISDN, IMSI;
    • SIM状态
      • deactivated停用
      • activated激活
      • retired
      • activation ready待激活
      • inventory
    • In Session
  • Month to Date Usage(MB)
  • Usage Limit Reached
  • Rate Plan