-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
migrate from flask to fast api for uvicorn and asgi support #75
Merged
Merged
Changes from all commits
Commits
Show all changes
13 commits
Select commit
Hold shift + click to select a range
77e9bce
migration from flask to fastapi for support asgi and for better perfo…
dtam 78fde5c
lint
dtam 2e3f050
update version
dtam 1ab9e52
fix pg support
dtam 065a6bc
remove last refs to flask
dtam 2cfa5f5
fix tests
dtam 758cd8f
code review comments
dtam 4fa1b4e
updates for async all the way down and add extra user info to share w…
dtam 04884ae
backout compose updates
dtam b073f6b
fix tests
dtam 0fc56ad
update our websever
dtam 1442c54
lint
dtam a2d9921
mock server
dtam File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
import json | ||
import os | ||
import inspect | ||
from typing import Any, Dict, Optional | ||
from fastapi import HTTPException, Request, APIRouter | ||
from fastapi.responses import JSONResponse, StreamingResponse | ||
from urllib.parse import unquote_plus | ||
from guardrails import AsyncGuard, Guard | ||
from guardrails.classes import ValidationOutcome | ||
from opentelemetry.trace import Span | ||
from guardrails_api_client import Guard as GuardStruct | ||
from guardrails_api.clients.cache_client import CacheClient | ||
from guardrails_api.clients.memory_guard_client import MemoryGuardClient | ||
from guardrails_api.clients.pg_guard_client import PGGuardClient | ||
from guardrails_api.clients.postgres_client import postgres_is_enabled | ||
from guardrails_api.utils.get_llm_callable import get_llm_callable | ||
from guardrails_api.utils.openai import ( | ||
outcome_to_chat_completion, | ||
outcome_to_stream_response, | ||
) | ||
from guardrails_api.utils.handle_error import handle_error | ||
from string import Template | ||
|
||
# if no pg_host is set, use in memory guards | ||
if postgres_is_enabled(): | ||
guard_client = PGGuardClient() | ||
else: | ||
guard_client = MemoryGuardClient() | ||
# Will be defined at runtime | ||
import config # noqa | ||
|
||
exports = config.__dir__() | ||
for export_name in exports: | ||
export = getattr(config, export_name) | ||
is_guard = isinstance(export, Guard) | ||
if is_guard: | ||
guard_client.create_guard(export) | ||
|
||
cache_client = CacheClient() | ||
|
||
cache_client.initialize() | ||
|
||
router = APIRouter() | ||
|
||
|
||
@router.get("/guards") | ||
@handle_error | ||
async def get_guards(): | ||
guards = guard_client.get_guards() | ||
return [g.to_dict() for g in guards] | ||
|
||
|
||
@router.post("/guards") | ||
@handle_error | ||
async def create_guard(guard: GuardStruct): | ||
if not postgres_is_enabled(): | ||
raise HTTPException( | ||
status_code=501, | ||
detail="Not Implemented POST /guards is not implemented for in-memory guards.", | ||
) | ||
new_guard = guard_client.create_guard(guard) | ||
return new_guard.to_dict() | ||
|
||
|
||
@router.get("/guards/{guard_name}") | ||
@handle_error | ||
async def get_guard(guard_name: str, asOf: Optional[str] = None): | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard = guard_client.get_guard(decoded_guard_name, asOf) | ||
if guard is None: | ||
raise HTTPException( | ||
status_code=404, | ||
detail=f"A Guard with the name {decoded_guard_name} does not exist!", | ||
) | ||
return guard.to_dict() | ||
|
||
|
||
@router.put("/guards/{guard_name}") | ||
@handle_error | ||
async def update_guard(guard_name: str, guard: GuardStruct): | ||
if not postgres_is_enabled(): | ||
raise HTTPException( | ||
status_code=501, | ||
detail="PUT /<guard_name> is not implemented for in-memory guards.", | ||
) | ||
decoded_guard_name = unquote_plus(guard_name) | ||
updated_guard = guard_client.upsert_guard(decoded_guard_name, guard) | ||
return updated_guard.to_dict() | ||
|
||
|
||
@router.delete("/guards/{guard_name}") | ||
@handle_error | ||
async def delete_guard(guard_name: str): | ||
if not postgres_is_enabled(): | ||
raise HTTPException( | ||
status_code=501, | ||
detail="DELETE /<guard_name> is not implemented for in-memory guards.", | ||
) | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard = guard_client.delete_guard(decoded_guard_name) | ||
return guard.to_dict() | ||
|
||
|
||
@router.post("/guards/{guard_name}/openai/v1/chat/completions") | ||
@handle_error | ||
async def openai_v1_chat_completions(guard_name: str, request: Request): | ||
payload = await request.json() | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard_struct = guard_client.get_guard(decoded_guard_name) | ||
if guard_struct is None: | ||
raise HTTPException( | ||
status_code=404, | ||
detail=f"A Guard with the name {decoded_guard_name} does not exist!", | ||
) | ||
|
||
guard = ( | ||
Guard.from_dict(guard_struct.to_dict()) | ||
if not isinstance(guard_struct, Guard) | ||
else guard_struct | ||
) | ||
stream = payload.get("stream", False) | ||
has_tool_gd_tool_call = any( | ||
tool.get("function", {}).get("name") == "gd_response_tool" | ||
for tool in payload.get("tools", []) | ||
) | ||
|
||
if not stream: | ||
validation_outcome: ValidationOutcome = guard(num_reasks=0, **payload) | ||
llm_response = guard.history.last.iterations.last.outputs.llm_response_info | ||
result = outcome_to_chat_completion( | ||
validation_outcome=validation_outcome, | ||
llm_response=llm_response, | ||
has_tool_gd_tool_call=has_tool_gd_tool_call, | ||
) | ||
return JSONResponse(content=result) | ||
else: | ||
|
||
async def openai_streamer(): | ||
guard_stream = guard(num_reasks=0, **payload) | ||
for result in guard_stream: | ||
chunk = json.dumps( | ||
outcome_to_stream_response(validation_outcome=result) | ||
) | ||
yield f"data: {chunk}\n\n" | ||
yield "\n" | ||
|
||
return StreamingResponse(openai_streamer(), media_type="text/event-stream") | ||
|
||
|
||
@router.post("/guards/{guard_name}/validate") | ||
@handle_error | ||
async def validate(guard_name: str, request: Request): | ||
payload = await request.json() | ||
openai_api_key = request.headers.get( | ||
"x-openai-api-key", os.environ.get("OPENAI_API_KEY") | ||
) | ||
decoded_guard_name = unquote_plus(guard_name) | ||
guard_struct = guard_client.get_guard(decoded_guard_name) | ||
|
||
llm_output = payload.pop("llmOutput", None) | ||
num_reasks = payload.pop("numReasks", None) | ||
prompt_params = payload.pop("promptParams", {}) | ||
llm_api = payload.pop("llmApi", None) | ||
args = payload.pop("args", []) | ||
stream = payload.pop("stream", False) | ||
|
||
payload["api_key"] = payload.get("api_key", openai_api_key) | ||
|
||
if llm_api is not None: | ||
llm_api = get_llm_callable(llm_api) | ||
if openai_api_key is None: | ||
raise HTTPException( | ||
status_code=400, | ||
detail="Cannot perform calls to OpenAI without an api key.", | ||
) | ||
|
||
guard = guard_struct | ||
is_async = inspect.iscoroutinefunction(llm_api) | ||
|
||
if not isinstance(guard_struct, Guard): | ||
if is_async: | ||
guard = AsyncGuard.from_dict(guard_struct.to_dict()) | ||
else: | ||
guard: Guard = Guard.from_dict(guard_struct.to_dict()) | ||
elif is_async: | ||
guard: Guard = AsyncGuard.from_dict(guard_struct.to_dict()) | ||
|
||
if llm_api is None and num_reasks and num_reasks > 1: | ||
raise HTTPException( | ||
status_code=400, | ||
detail="Cannot perform re-asks without an LLM API. Specify llm_api when calling guard(...).", | ||
) | ||
|
||
if llm_output is not None: | ||
if stream: | ||
raise HTTPException( | ||
status_code=400, detail="Streaming is not supported for parse calls!" | ||
) | ||
result: ValidationOutcome = guard.parse( | ||
llm_output=llm_output, | ||
num_reasks=num_reasks, | ||
prompt_params=prompt_params, | ||
llm_api=llm_api, | ||
**payload, | ||
) | ||
else: | ||
if stream: | ||
|
||
async def guard_streamer(): | ||
guard_stream = guard( | ||
llm_api=llm_api, | ||
prompt_params=prompt_params, | ||
num_reasks=num_reasks, | ||
stream=stream, | ||
*args, | ||
**payload, | ||
) | ||
for result in guard_stream: | ||
validation_output = ValidationOutcome.from_guard_history( | ||
guard.history.last | ||
) | ||
yield validation_output, result | ||
|
||
async def validate_streamer(guard_iter): | ||
async for validation_output, result in guard_iter: | ||
fragment_dict = result.to_dict() | ||
fragment_dict["error_spans"] = [ | ||
json.dumps({"start": x.start, "end": x.end, "reason": x.reason}) | ||
for x in guard.error_spans_in_output() | ||
] | ||
yield json.dumps(fragment_dict) + "\n" | ||
|
||
call = guard.history.last | ||
final_validation_output = ValidationOutcome( | ||
callId=call.id, | ||
validation_passed=result.validation_passed, | ||
validated_output=result.validated_output, | ||
history=guard.history, | ||
raw_llm_output=result.raw_llm_output, | ||
) | ||
final_output_dict = final_validation_output.to_dict() | ||
final_output_dict["error_spans"] = [ | ||
json.dumps({"start": x.start, "end": x.end, "reason": x.reason}) | ||
for x in guard.error_spans_in_output() | ||
] | ||
yield json.dumps(final_output_dict) + "\n" | ||
|
||
serialized_history = [call.to_dict() for call in guard.history] | ||
cache_key = f"{guard.name}-{final_validation_output.call_id}" | ||
await cache_client.set(cache_key, serialized_history, 300) | ||
|
||
return StreamingResponse( | ||
validate_streamer(guard_streamer()), media_type="application/json" | ||
) | ||
else: | ||
if inspect.iscoroutinefunction(guard): | ||
result: ValidationOutcome = await guard( | ||
llm_api=llm_api, | ||
prompt_params=prompt_params, | ||
num_reasks=num_reasks, | ||
*args, | ||
**payload, | ||
) | ||
else: | ||
result: ValidationOutcome = guard( | ||
llm_api=llm_api, | ||
prompt_params=prompt_params, | ||
num_reasks=num_reasks, | ||
*args, | ||
**payload, | ||
) | ||
|
||
serialized_history = [call.to_dict() for call in guard.history] | ||
cache_key = f"{guard.name}-{result.call_id}" | ||
await cache_client.set(cache_key, serialized_history, 300) | ||
return result.to_dict() | ||
|
||
|
||
@router.get("/guards/{guard_name}/history/{call_id}") | ||
@handle_error | ||
async def guard_history(guard_name: str, call_id: str): | ||
cache_key = f"{guard_name}-{call_id}" | ||
return await cache_client.get(cache_key) | ||
|
||
|
||
def collect_telemetry( | ||
*, | ||
guard: Guard, | ||
validate_span: Span, | ||
validation_output: ValidationOutcome, | ||
prompt_params: Dict[str, Any], | ||
result: ValidationOutcome, | ||
): | ||
# Below is all telemetry collection and | ||
# should have no impact on what is returned to the user | ||
prompt = guard.history.last.inputs.prompt | ||
if prompt: | ||
prompt = Template(prompt).safe_substitute(**prompt_params) | ||
validate_span.set_attribute("prompt", prompt) | ||
|
||
instructions = guard.history.last.inputs.instructions | ||
if instructions: | ||
instructions = Template(instructions).safe_substitute(**prompt_params) | ||
validate_span.set_attribute("instructions", instructions) | ||
|
||
validate_span.set_attribute("validation_status", guard.history.last.status) | ||
validate_span.set_attribute("raw_llm_ouput", result.raw_llm_output) | ||
|
||
# Use the serialization from the class instead of re-writing it | ||
valid_output: str = ( | ||
json.dumps(validation_output.validated_output) | ||
if isinstance(validation_output.validated_output, dict) | ||
else str(validation_output.validated_output) | ||
) | ||
validate_span.set_attribute("validated_output", valid_output) | ||
|
||
validate_span.set_attribute("tokens_consumed", guard.history.last.tokens_consumed) | ||
|
||
num_of_reasks = ( | ||
guard.history.last.iterations.length - 1 | ||
if guard.history.last.iterations.length > 0 | ||
else 0 | ||
) | ||
validate_span.set_attribute("num_of_reasks", num_of_reasks) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Super pedantic, but any reason to not call it once and inspect on the result? albeit, I think the type checker gets a little more angry with that method