Skip to content

NVIDIA PyTorch/CUDA Job #32

NVIDIA PyTorch/CUDA Job

NVIDIA PyTorch/CUDA Job #32

name: NVIDIA PyTorch/CUDA Job
on:
workflow_dispatch:
inputs:
script_content:
description: 'Content of script (Python or CUDA)'
required: true
type: string
filename:
description: 'Name of script (supports .py and .cu files)'
required: true
type: string
jobs:
build-and-train:
runs-on: [gpumode-nvidia-arc]
timeout-minutes: 10
container:
image: nvidia/cuda:12.4.0-devel-ubuntu22.04
steps:
- name: Create script
shell: bash
run: |
echo '${{ github.event.inputs.script_content }}' > '${{ github.event.inputs.filename }}'
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install uv if Python
if: endsWith(github.event.inputs.filename, '.py')
uses: astral-sh/setup-uv@v3
with:
version: "latest"
- name: Setup Python environment if needed
if: endsWith(github.event.inputs.filename, '.py')
run: |
uv venv .venv
echo "VIRTUAL_ENV=$PWD/.venv" >> $GITHUB_ENV
echo "$PWD/.venv/bin" >> $GITHUB_PATH
- name: Install Python dependencies if needed
if: endsWith(github.event.inputs.filename, '.py')
run: |
# Check if 'import torch' is in any Python file
if grep -rE "(import torch|from torch)" "${{ github.event.inputs.filename }}"; then
echo "PyTorch detected, installing torch"
uv pip install numpy torch
fi
# Check if 'import triton' is in any Python file
if grep -rE "(import triton|from triton)" "${{ github.event.inputs.filename }}"; then
echo "Triton detected, installing triton"
uv pip install triton
fi
- name: Compile CUDA if needed
if: endsWith(github.event.inputs.filename, '.cu')
run: |
echo "Compiling CUDA file..."
nvcc "${{ github.event.inputs.filename }}" -o cuda_program
- name: Run script
run: |
if [[ "${{ github.event.inputs.filename }}" == *.cu ]]; then
./cuda_program > output.log 2>&1
else
python "${{ github.event.inputs.filename }}" > output.log 2>&1
fi
- name: Upload artifacts
uses: actions/upload-artifact@v4
if: always()
with:
name: run-artifacts
path: |
output.log
${{ github.event.inputs.filename }}
env:
CUDA_VISIBLE_DEVICES: 0