- keras
- tensorflow / theano as backend for keras (tensoflow recommended)
- sklearn
- numpy
python setup.py install
from dvn import FCN, VNET, UNET # import libraries
net = FCN() # create the network object (You can replace FCN with VNET or UNET),
# there is a 'dim' parameter which takes the values 2, or 3 to build 2D or 3D versions of the networks (Default is 3)
# there is a 'cross_hair' parameter which builds a network with cross-hair filters when set to True (Default is False)
net.compile() # compile the network (supports keras compile parameters)
net.fit(x=X, y=Y, epochs=10, batch_size=10) # train the network (supports keras fit parameters)
preds = net.predict(x=X) # predict (supports keras predict parameters)
net.save(filename='model.dat') # save network params
net = FCN.load(filename='model.dat') # Load network params (You can replace FCN with VNET or UNET as used above)
For information on the data used for training etc. Have a look at the Datasets page in the wiki section