Skip to content

galarragas/ValiData

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status

Simple Data Validation Framework in Scala ValiData allows you to write Scalaz based validations using an expressive and flexible DSL.

How Does It Look Like

You can define a type validator for your class placing assertions on each of its attributes, on a group of its attributes or the whole class

  case class TestClass(val stringAttribute: String, val expectedLength: Int, val optionAttribute: Option[String], val listAttribute: List[Int] = List.empty)

  implicit object testClassValidator extends TypeValidator[TestClass] with BaseValidations {
    override def validations = requiresAll(
      "Attribute 1" definedBy { _.stringAttribute } must beNotEmpty,
      "Attribute 2" definedBy { _.expectedLength } must beNonNegative,
      "Attribute 3" definedBy { _.optionAttribute } must { beDefined[String] and content(beValidAsRegex) },
      "Attribute 4" definedBy { _.listAttribute } must { beEmptyIterable[List[Int]] or all( beNonNegative[Int] ) },

      // Can place assertions on several attributes
      "Complex Property" definedBy { obj => (obj.expectedLength, obj.stringAttribute) } must {
        satisfyCriteria[(Int, String)]("String should be as long as its declared len") { case (len, string) => string.length == len }
      },

      // Can place assertions on the full object too
      it must {
        satisfyCriteria[TestClass]("Some assertion on the full class") { obj => if(obj.stringAttribute.isEmpty) obj.optionAttribute.isDefined else true }
      }
    )
  }

Once you have a type validator for type T in scope you can generate a Scalaz ValidationNel[String, T] from any instance of type T simply writing

    val validation: ValidationNel[String, TestClass] = TestClass("attrib1", 1, Some(".+")).validated

That will return you either: the input object wrapped in a Scalaz Validation.success or the list of validation errors in a list of Validation.failureNel

To read more about Scalaz Validations please have a look at the learning ScalaZ section on them

Writing a Validation

To generate a type validator you usually combine a set of validation on the type sub-parts such as type properties.

There is a set of pre-defined basic validations on basic types. The simplest way to write a custom validation is to reuse the method satisfyCriteria on wich you simply have to provide your validation failure message and the success criteria.

To write more complex validations you just have to provide a function from your input type T to ValidationNel[String, T]. There are a couple of helper methods to help dealing with Scalaz syntax and generate a success or a failure. The implementation of satisfyCriteria should be a good example:

  def satisfyCriteria[T](failureDescription: String)(criteria: T => Boolean): DataValidationFunction[T] = (value: T) => {
      if(criteria(value))
        validationSuccess(value)
      else
        failWithMessage(failureDescription)
    }

Accessing Base Type Properties

The DSL allows you to define properties and their constraint with a declarative way. In general a property for type Type is defined with the following expression

"Property Description" definedBy propertyExtractor

Where propertyExtractor is an expression from Type to PropertyType.

The simplest example of an extractor is the property getter as in the following example for class TestClass

"Attribute 1" definedBy { _.stringAttribute }

Lenses

Lenses are a functional way of defining getters and setters for complex structures. The ValiData DSL allows you to use two different implementation of the Lens concept:

To use ScalaZ lenses you simply have to import uk.co.pragmasoft.validate.lenses.ScalazLenses._

  import uk.co.pragmasoft.validate._
  import scalaz._
  import uk.co.pragmasoft.validate.lenses.ScalazLenses._

  case class TestClass(val attribute1: String, val attribute2: Int)

  val attr1Lens = Lens.lensu[TestClass, String]( (obj, attr1) => new TestClass(attr1, obj.attribute2),  obj => obj.attribute1 )
  val attr2Lens = Lens.lensu[TestClass, Int]( (obj, attr2) => new TestClass(obj.attribute1, attr2),  obj => obj.attribute2 )
  

  implicit val validator = new TypeValidator[TestClass]  {
    override def validations =
      ( "Attribute 1" definedBy attr1Lens must beNotEmpty ) and ( "Attribute2" definedBy attr2Lens must beNonNegative )

  }

The usage of the Monocle lenses is similar, just import uk.co.pragmasoft.validate.lenses.MonocleLenses._. You have to follow Monocle documentation on how to enable the Macro based Lenses if you want to execute the example below or use the other way to define Lenses for a type:

  import monocle.macros.Lenses
  import uk.co.pragmasoft.validate._
  import uk.co.pragmasoft.validate.lenses.MonocleLenses._
  import scala.language.higherKinds

  @Lenses("_")
  case class TestClass(val attribute1: String, val attribute2: Int, val attribute3: Option[String], val attribute4: List[Int] = List.empty)


  implicit object testClassValidator extends TypeValidator[TestClass] with BaseValidations {

    import TestClass._

    override def validations = requiresAll(
      "Attribute 1" definedBy _attribute1 must beNotEmpty,
      "Attribute 2" definedBy _attribute2 must beNonNegative,
      "Attribute 3" definedBy _attribute3 must { beDefined[String] and content(beValidAsRegex) },
      "Attribute 4" definedBy _attribute4 must { beEmptyIterable[List[Int]] or all( beNonNegative[Int] ) }
    )
  }
 

Composing validations

Validations are composed with the following operators:

  • validation1 and validation2 to require both validations to be true. This will validate both validations
  • validation1 or validation2 to require either validation1 or validation2 to pass. If validation1 is successful validation2 won't be called
  • requiresAll( validation1, validation2, ... ) to require all validation to pass. This is simply a more compact and efficient way to combine all the validations with and
  • all ( validation ) allows to apply a validation on type T on an object of type K <: Iterable[T]
  • content ( validation ) allows to apply a validation on type T on an object of type Option[T]

Including ValiData in Your Project

Add conjars resolver and dependency (only available for 2.11 at the moment):

resolvers ++= "Conjars Repo" at "http://conjars.org/repo"

libraryDependencies += "uk.co.pragmasoft" %% "validata" % "0.1"

License

Copyright 2015 PragmaSoft Ltd.

Licensed under the Apache License, Version 2.0

About

Simple Scala DSL to Create ScalaZ Validations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages