Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DTI uncertainty visualization #810

Merged
merged 14 commits into from
Feb 27, 2024
59 changes: 58 additions & 1 deletion fury/actor.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@
from fury import layout
from fury.actors.odf_slicer import OdfSlicerActor
from fury.actors.peak import PeakActor
from fury.actors.tensor import tensor_ellipsoid
from fury.actors.tensor import double_cone, main_dir_uncertainty, \
tensor_ellipsoid
from fury.colormap import colormap_lookup_table
from fury.deprecator import deprecate_with_version, deprecated_params
from fury.io import load_image
Expand Down Expand Up @@ -3868,3 +3869,59 @@ def ellipsoid(

return tensor_ellipsoid(centers, axes, lengths, colors, scales, opacity)


def uncertainty_cone(
evals,
evecs,
signal,
sigma,
b_matrix,
scales=.6,
opacity=1.0
):
"""
VTK actor for visualizing the cone of uncertainty representing the
variance of the main direction of diffusion.

Parameters
----------
evals : ndarray (3, ) or (N, 3)
Eigenvalues.
evecs : ndarray (3, 3) or (N, 3, 3)
Eigenvectors.
signal : 3D or 4D ndarray
Predicted signal.
sigma : ndarray
Standard deviation of the noise.
b_matrix : array (N, 7)
Design matrix for DTI.
scales : float or ndarray (N, ), optional
Cones of uncertainty size.
opacity : float, optional
Takes values from 0 (fully transparent) to 1 (opaque), default(1.0).

Returns
-------
double_cone: Actor

"""

valid_mask = np.abs(evecs).max(axis=(-2, -1)) > 0
indices = np.nonzero(valid_mask)

evecs = evecs[indices]
evals = evals[indices]
signal = signal[indices]

centers = np.asarray(indices).T
colors = np.array([107, 107, 107])

x, y, z = evecs.shape
if not isinstance(scales, np.ndarray):
scales = np.array(scales)
if scales.size == 1:
scales = np.repeat(scales, x)

angles = main_dir_uncertainty(evals, evecs, signal, sigma, b_matrix)

return double_cone(centers, evecs, angles, colors, scales, opacity)
Loading
Loading