-
Notifications
You must be signed in to change notification settings - Fork 46
Use cuda bundle adjustment in ORB SLAM2 (old version)
This page describes how to incorporate cuda-bundle-adjustment into ORB-SLAM2.
We try to replace g2o::SparseOptimizer
with cuba::CudaBundleAdjustment
in Optimizer::BundleAdjustment()
.
First, build and install cuda-bundle-adjustment
. We choose ORB_SLAM2/Thirdparty
as install directory, so set CMAKE_INSTALL_PREFIX
to {YOUR_ORB_SLAM2_DIR}/Thirdparty/cuda-bundle-adjustment
.
$ git clone https://github.com/fixstars/cuda-bundle-adjustment.git
$ cd cuda-bundle-adjustment
$ mkdir build
$ cd build
$ cmake .. -DCMAKE_INSTALL_PREFIX={YOUR_ORB_SLAM2_DIR}/Thirdparty/cuda-bundle-adjustment
Then, build and install.
$ make -j 4
$ make install
Confirm that the library and header files are installed into ORB_SLAM2/Thirdparty/cuda-bundle-adjustment
.
Edit ORB_SLAM2/CMakeLists.txt
as follows. Here, we focus on only stereo_kitti
sample.
find_package(Eigen3 3.1.0 REQUIRED)
find_package(Pangolin REQUIRED)
+find_package(CUDA REQUIRED)
include_directories(
${PROJECT_SOURCE_DIR}
${PROJECT_SOURCE_DIR}/include
${EIGEN3_INCLUDE_DIR}
${Pangolin_INCLUDE_DIRS}
+${PROJECT_SOURCE_DIR}/Thirdparty/cuda-bundle-adjustment/include
)
link_directories(${PROJECT_SOURCE_DIR}/Thirdparty/DBoW2/lib)
link_directories(${PROJECT_SOURCE_DIR}/Thirdparty/g2o/lib)
+link_directories(${PROJECT_SOURCE_DIR}/Thirdparty/cuda-bundle-adjustment/lib)
target_link_libraries(${PROJECT_NAME}
${OpenCV_LIBS}
${EIGEN3_LIBS}
${Pangolin_LIBRARIES}
DBoW2
g2o
+cuda_bundle_adjustment
+${CUDA_cusparse_LIBRARY}
+${CUDA_cusolver_LIBRARY}
)
-add_executable(stereo_kitti
+cuda_add_executable(stereo_kitti
Examples/Stereo/stereo_kitti.cc)
target_link_libraries(stereo_kitti ${PROJECT_NAME})
Let's try to replace g2o::SparseOptimizer
with cuba::CudaBundleAdjustment
in Optimizer::BundleAdjustment()
.
Include cuda_bundle_adjustment.h
in Optimizer.cc
.
#include "Thirdparty/g2o/g2o/core/robust_kernel_impl.h"
#include "Thirdparty/g2o/g2o/solvers/linear_solver_dense.h"
#include "Thirdparty/g2o/g2o/types/types_seven_dof_expmap.h"
+#include <cuda_bundle_adjustment.h>
Then, edit the part of creating optimizer as follows.
-g2o::SparseOptimizer optimizer;
-g2o::BlockSolver_6_3::LinearSolverType * linearSolver;
-linearSolver = new g2o::LinearSolverEigen<g2o::BlockSolver_6_3::PoseMatrixType>();
-g2o::BlockSolver_6_3 * solver_ptr = new g2o::BlockSolver_6_3(linearSolver);
-g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg(solver_ptr);
-optimizer.setAlgorithm(solver);
+auto optimizer = cuba::CudaBundleAdjustment::create();
+std::set<cuba::PoseVertex*> verticesP;
+std::set<cuba::LandmarkVertex*> verticesL;
+std::set<cuba::MonoEdge*> edgesMono;
+std::set<cuba::StereoEdge*> edgesStereo;
note:
cuba::CudaBundleAdjustment
doesn't take responsibility for deleting pointers to vertices and edges in the graph.
We need to delete the pointers after optimization by ourselves. To do so, keep the pointers in extra containers.
In optimization, there is overhead time caused by memory allocations. If optimization is called multiple times in one sequence, we can reuse optimizer object and reduce the overhead from next time.
-auto optimizer = cuba::CudaBundleAdjustment::create();
+static cuba::CudaBundleAdjustment::Ptr optimizer = nullptr;
+if (!optimizer)
+ optimizer = cuba::CudaBundleAdjustment::create();
Edit the part of adding pose vertices into the optimizer as follows. Each pose vertex is represented by cuba::PoseVertex
and added in the optimizer by addPoseVertex()
.
-g2o::VertexSE3Expmap * vSE3 = new g2o::VertexSE3Expmap();
-vSE3->setEstimate(Converter::toSE3Quat(pKF->GetPose()));
-vSE3->setId(pKF->mnId);
-vSE3->setFixed(pKF->mnId==0);
-optimizer.addVertex(vSE3);
+const auto pose = Converter::toSE3Quat(pKF->GetPose());
+const auto& q = pose.rotation();
+const auto& t = pose.translation();
+auto v = new cuba::PoseVertex(pKF->mnId, q, t, pKF->mnId == 0);
+optimizer->addPoseVertex(v);
+verticesP.insert(v);
Edit the part of adding landmark vertices into the optimizer as follows. Each landmark vertex is represented by cuba::LandmarkVertex
and added in the optimizer by addLandmarkVertex()
.
-g2o::VertexSBAPointXYZ* vPoint = new g2o::VertexSBAPointXYZ();
-vPoint->setEstimate(Converter::toVector3d(pMP->GetWorldPos()));
-const int id = pMP->mnId+maxKFid+1;
-vPoint->setId(id);
-vPoint->setMarginalized(true);
-optimizer.addVertex(vPoint);
+const int id = pMP->mnId + maxKFid + 1;
+const auto Xw = Converter::toVector3d(pMP->GetWorldPos());
+auto v = new cuba::LandmarkVertex(id, Xw);
+optimizer->addLandmarkVertex(v);
+verticesL.insert(v);
Use removeLandmarkVertex()
when removing.
if(nEdges==0)
{
- optimizer.removeVertex(vPoint);
+ optimizer->removeLandmarkVertex(v);
vbNotIncludedMP[i]=true;
}
Edit the part of adding edges with monocular observation as follows.
-Eigen::Matrix<double,2,1> obs;
-obs << kpUn.pt.x, kpUn.pt.y;
-
-g2o::EdgeSE3ProjectXYZ* e = new g2o::EdgeSE3ProjectXYZ();
-
-e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
-e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
-e->setMeasurement(obs);
-const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
-e->setInformation(Eigen::Matrix2d::Identity()*invSigma2);
-if(bRobust)
-{
- g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
- e->setRobustKernel(rk);
- rk->setDelta(thHuber2D);
-}
-
-e->fx = pKF->fx;
-e->fy = pKF->fy;
-e->cx = pKF->cx;
-e->cy = pKF->cy;
-optimizer.addEdge(e);
+const float u = kpUn.pt.x;
+const float v = kpUn.pt.y;
+const float invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
+auto vertexP = optimizer->poseVertex(pKF->mnId);
+auto vertexL = optimizer->landmarkVertex(id);
+auto e = new cuba::MonoEdge({ u, v }, invSigma2, vertexP, vertexL);
+optimizer->addMonocularEdge(e);
+edgesMono.insert(e);
Edit the part of adding edges with stereo observation as follows.
-Eigen::Matrix<double,3,1> obs;
-const float kp_ur = pKF->mvuRight[mit->second];
-obs << kpUn.pt.x, kpUn.pt.y, kp_ur;
-
-g2o::EdgeStereoSE3ProjectXYZ* e = new g2o::EdgeStereoSE3ProjectXYZ();
-
-e->setVertex(0, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(id)));
-e->setVertex(1, dynamic_cast<g2o::OptimizableGraph::Vertex*>(optimizer.vertex(pKF->mnId)));
-e->setMeasurement(obs);
-const float &invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
-Eigen::Matrix3d Info = Eigen::Matrix3d::Identity()*invSigma2;
-e->setInformation(Info);
-if(bRobust)
-{
- g2o::RobustKernelHuber* rk = new g2o::RobustKernelHuber;
- e->setRobustKernel(rk);
- rk->setDelta(thHuber3D);
-}
-e->fx = pKF->fx;
-e->fy = pKF->fy;
-e->cx = pKF->cx;
-e->cy = pKF->cy;
-e->bf = pKF->mbf;
-
-optimizer.addEdge(e);
+const float u = kpUn.pt.x;
+const float v = kpUn.pt.y;
+const float ur = pKF->mvuRight[mit->second];
+const float invSigma2 = pKF->mvInvLevelSigma2[kpUn.octave];
+auto vertexP = optimizer->poseVertex(pKF->mnId);
+auto vertexL = optimizer->landmarkVertex(id);
+auto e = new cuba::StereoEdge({ u, v, ur }, invSigma2, vertexP, vertexL);
+optimizer->addStereoEdge(e);
+edgesStereo.insert(e);
limitation:
Robust kernels are currently not supported (actually bRobust
is always false in the source code).
In cuba::CudaBundleAdjustment
, the camera parameters are the same in all edges (it is assumed obserbations are done by a single camera). Set the camera parameters at first keyframe to optimizer.
+// Set camera parameters
+cuba::CameraParams camera;
+camera.fx = vpKFs[0]->fx;
+camera.fy = vpKFs[0]->fy;
+camera.cx = vpKFs[0]->cx;
+camera.cy = vpKFs[0]->cy;
+camera.bf = vpKFs[0]->mbf;
+optimizer->setCameraPrams(camera);
Edit the part of optimization.
-optimizer.initializeOptimization();
-optimizer.optimize(nIterations);
+optimizer->initialize();
+optimizer->optimize(nIterations);
Edit the part of recovering optimized data as follows.
//Keyframes
for(size_t i=0; i<vpKFs.size(); i++)
{
KeyFrame* pKF = vpKFs[i];
if(pKF->isBad())
continue;
- g2o::VertexSE3Expmap* vSE3 = static_cast<g2o::VertexSE3Expmap*>(optimizer.vertex(pKF->mnId));
- g2o::SE3Quat SE3quat = vSE3->estimate();
+ auto v = optimizer->poseVertex(pKF->mnId);
+ const g2o::SE3Quat estimate(v->q, v->t);
if(nLoopKF==0)
{
- pKF->SetPose(Converter::toCvMat(SE3quat));
+ pKF->SetPose(Converter::toCvMat(estimate));
}
else
{
pKF->mTcwGBA.create(4,4,CV_32F);
- Converter::toCvMat(SE3quat).copyTo(pKF->mTcwGBA);
+ Converter::toCvMat(estimate).copyTo(pKF->mTcwGBA);
pKF->mnBAGlobalForKF = nLoopKF;
}
}
//Points
for(size_t i=0; i<vpMP.size(); i++)
{
if(vbNotIncludedMP[i])
continue;
if(pMP->isBad())
continue;
- g2o::VertexSBAPointXYZ* vPoint = static_cast<g2o::VertexSBAPointXYZ*>(optimizer.vertex(pMP->mnId+maxKFid+1));
+ auto v = optimizer->landmarkVertex(pMP->mnId + maxKFid + 1);
if(nLoopKF==0)
{
- pMP->SetWorldPos(Converter::toCvMat(vPoint->estimate()));
+ pMP->SetWorldPos(Converter::toCvMat(v->Xw));
pMP->UpdateNormalAndDepth();
}
else
{
pMP->mPosGBA.create(3,1,CV_32F);
- Converter::toCvMat(vPoint->estimate()).copyTo(pMP->mPosGBA);
+ Converter::toCvMat(v->Xw).copyTo(pMP->mPosGBA);
pMP->mnBAGlobalForKF = nLoopKF;
}
}
Delete pointers to vertices and edges. If reusing optimizer, call optimizer->clear()
to reset the graph.
+for (auto v : verticesP) delete v;
+for (auto v : verticesL) delete v;
+for (auto e : edgesMono) delete e;
+for (auto e : edgesStereo) delete e;
+
+optimizer->clear();