-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
""" | ||
This tests the terminator toy physics scheme that models the interaction | ||
of two chemical species through coupled ODEs. | ||
""" | ||
|
||
from gusto import * | ||
from firedrake import IcosahedralSphereMesh, Constant, cos, \ | ||
sin, SpatialCoordinate, Function, max_value, as_vector, \ | ||
errornorm, norm | ||
import numpy as np | ||
|
||
|
||
def run_terminator_toy(dirname): | ||
|
||
# ------------------------------------------------------------------------ # | ||
# Set up model objects | ||
# ------------------------------------------------------------------------ # | ||
|
||
# A much larger timestep than in proper simulations, as this | ||
# tests moving towards a steady state with no flow. | ||
dt = 50000. | ||
|
||
# Make the mesh and domain | ||
R = 6371220. | ||
mesh = IcosahedralSphereMesh(radius=R, | ||
refinement_level=2, degree=2) | ||
|
||
# get lat lon coordinates | ||
x = SpatialCoordinate(mesh) | ||
lamda, theta, _ = lonlatr_from_xyz(x[0], x[1], x[2]) | ||
|
||
domain = Domain(mesh, dt, 'BDM', 1) | ||
|
||
# Define the interacting species | ||
X = ActiveTracer(name='X', space='DG', | ||
variable_type=TracerVariableType.mixing_ratio, | ||
transport_eqn=TransportEquationType.advective) | ||
|
||
X2 = ActiveTracer(name='X2', space='DG', | ||
variable_type=TracerVariableType.mixing_ratio, | ||
transport_eqn=TransportEquationType.advective) | ||
|
||
tracers = [X, X2] | ||
|
||
# Equation | ||
V = domain.spaces("HDiv") | ||
eqn = CoupledTransportEquation(domain, active_tracers=tracers, Vu=V) | ||
|
||
output = OutputParameters(dirname=dirname+"/terminator_toy", | ||
dumpfreq=10) | ||
io = IO(domain, output) | ||
|
||
# Define the reaction rates: | ||
theta_c = np.pi/9. | ||
lamda_c = -np.pi/3. | ||
|
||
k1 = max_value(0, sin(theta)*sin(theta_c) + cos(theta)*cos(theta_c)*cos(lamda-lamda_c)) | ||
k2 = 1 | ||
|
||
physics_schemes = [(TerminatorToy(eqn, k1=k1, k2=k2, species1_name='X', | ||
species2_name='X2'), BackwardEuler(domain))] | ||
|
||
# Set up a non-divergent, time-varying, velocity field | ||
def u_t(t): | ||
return as_vector([Constant(0)*lamda, Constant(0)*lamda, Constant(0)*lamda]) | ||
|
||
X_T_0 = 4e-6 | ||
X_0 = X_T_0 + 0*lamda | ||
X2_0 = 0*lamda | ||
|
||
transport_scheme = SSPRK3(domain) | ||
transport_method = [DGUpwind(eqn, 'X'), DGUpwind(eqn, 'X2')] | ||
|
||
stepper = SplitPrescribedTransport(eqn, transport_scheme, io, | ||
spatial_methods=transport_method, | ||
physics_schemes=physics_schemes, | ||
prescribed_transporting_velocity=u_t) | ||
|
||
stepper.fields("X").interpolate(X_0) | ||
stepper.fields("X2").interpolate(X2_0) | ||
|
||
stepper.run(t=0, tmax=10*dt) | ||
|
||
# Compute the steady state solution to compare to | ||
steady_space = domain.spaces('DG') | ||
X_steady = Function(steady_space) | ||
X2_steady = Function(steady_space) | ||
|
||
r = k1/(4*k2) | ||
D_val = sqrt(r**2 + 2*X_T_0*r) | ||
|
||
X_steady.interpolate(D_val - r) | ||
X2_steady.interpolate(0.5*(X_T_0 - D_val + r)) | ||
|
||
return stepper, X_steady, X2_steady | ||
|
||
|
||
def test_terminator_toy_setup(tmpdir): | ||
dirname = str(tmpdir) | ||
stepper, X_steady, X2_steady = run_terminator_toy(dirname) | ||
X_field = stepper.fields("X") | ||
X2_field = stepper.fields("X2") | ||
|
||
print(errornorm(X_field, X_steady)/norm(X_steady)) | ||
print(errornorm(X2_field, X2_steady)/norm(X2_steady)) | ||
|
||
# Assert that the physics scheme has sufficiently moved | ||
# the species fields near their steady state solutions | ||
assert errornorm(X_field, X_steady)/norm(X_steady) < 0.4, "The X field is not sufficiently close to the steady state profile" | ||
assert errornorm(X2_field, X2_steady)/norm(X2_steady) < 0.4, "The X2 field is not sufficiently close to the steady state profile" |