Skip to content

fengxie009/MMB-by-MMB

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

MMB-by-MMB Algorithm

MMB_by_MMB.py

Main Function

MMB_by_MMB(Data, target, alpha, p, maxK, verbose = False)

Input arguments:

  • Data: data observation, datatype: ndarray
  • target: target variable, datatype: int
  • alpha: confidence threshold
  • p: number of observation data nodes, datatype: int
  • maxK: the maximal degree of any variable, datatype: int

Output arguments:

  • P : Set of parent nodes of the target variable, datatype: ndarray
  • C : Set of children nodes of the target variable, datatype: ndarray
  • dis_depth1 : Set of districts nodes of the target variable, datatype: ndarray
  • un : Set of nodes connected by undirected edges with the target variable, datatype: ndarray
  • ci_test : The number of conditional independence tests in the program, datetype: int

Package requirements:

  • numpy
  • math
  • scipy
  • itertools

CITATION

If you use this code, please cite the following paper:

Feng Xie, Zheng Li, Peng Wu, Yan Zeng, Chunchen Liu, and Zhi Geng. Local Causal Structure Learning in the Presence of Latent Variables. The Forty-first International Conference on Machine Learning (ICML), Vienna, Austria, 2024.

If you have problems or questions, do not hesitate to send an email to [email protected] or [email protected].

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages