BlackParrot aims to be the default open-source, Linux-capable, cache-coherent, RV64GC multicore used by the world. Although originally developed by the University of Washington and Boston University, BlackParrot strives to be community-driven and infrastructure agnostic, a core which is Pareto optimal in terms of power, performance, area and complexity. In order to ensure BlackParrot is easy to use, integrate, modify and trust, development is guided by three core principles: Be Tiny, Be Modular, and Be Friendly. Development efforts have prioritized ease of use and silicon validation as first order design metrics, so that users can quickly get started and trust that their results will be representative of state-of-the-art ASIC designs. BlackParrot is ideal as the basis for a lightweight accelerator host, a standalone Linux core, or as a hardware research platform.
- Be TINY
- When deliberating between two options, consider the one with least hardware cost/complexity.
- Be Modular
- Prevent tight coupling between modules by designing latency insenstive interfaces.
- Be Friendly
- Combat NIH, welcome external contributions and strive for infrastructure agnosticism.
BlackParrot v 1.0 was released in March 2020 and has been up and running in the lab since April 2020. It supports configurations scaling up to a 16-core cache coherent multicore, including the baseline user and privilege mode functionality to run Linux. An optimized single core variant of BlackParrot (also Linux-capable) is also available.
Development of BlackParrot continues, and we are very excited about what we are releasing next!
A 12nm BlackParrot multicore chip was taped out in July 2019.
We first announced BlackParrot at FOSDEM 2020! slides video
Users who just want to test their setup and run a minimal BlackParrot test should run the following:
# Clone the latest repo
git clone https://github.com/black-parrot/black-parrot.git
cd black-parrot
# Install a minimal set of tools and libraries
# For faster builds, make prep_lite -j is parallelizable!
make prep_lite
# Running your first test
make -C bp_top/syn tire_kick
This should output (roughly)
Hello world!
[CORE0 FSH] PASS
[CORE0 STATS]
clk : 220
instr : 66
mIPC : 300
All cores finished! Terminating...
For a painless Ubuntu build, download and install Docker Desktop then run the following:
git clone https://github.com/black-parrot/black-parrot.git
cd black-parrot
docker-compose build --build-arg USER_ID=$(id -u) --build-arg GROUP_ID=$(id -g) bp
docker-compose up -d
docker-compose exec bp su - build
Then follow the Tire Kick directions above starting with "cd black-parrot" or the "Full" directions below. The repo directory will be mounted inside the container.
Users who want to fully evaluate BlackParrot, or develop hardware or software using it should follow Getting Started (Full).
Although the information in collected in this repo, it's recommended to look at these Slides for a quick overview of BlackParrot.
We welcome external contributions! Please join our mailing list at Google Groups and follow us on Twitter to discuss, ask questions or just tell us how you're using BlackParrot! For a smooth contribution experience, take a look at our Contribution Guide.
BlackParrot is written in standard SystemVerilog, using a subset of the language known to be both synthesizable and compatible with a wide variety of vendor tools. Details of these style choices both functional and aesthetic can be found in our Style Guide
BlackParrot is Linux-capable, so it is possible to run all programs which run on BusyBox. However, for more targeted benchmarks which don't want O/S management overheads (or the overheads of a long Linux boot time in simulation!), it is preferable to write for bare-metal. Additionally, some platform-specific features are only available at the firmware level. Developers looking to write low-level BlackParrot code, or optimize for the BlackParrot platform should look at our SW Developer Guide
BlackParrot is an aggresively modular design: communication between the components is performed over a set of narrow, latency-insensitive interfaces. The interfaces are designed to allow implementations of the various system components to change independently of one another, without worrying about cascading functional or timing effects. Read more about BlackParrot's standardized interfaces here: Interface Specification
The BedRock coherence system maintains cache coherence between the BlackParrot processor cores and attached coherent accelerators in a BlackParrot multicore system. Please see the BedRock Guide for more details on the coherence protocol and system.
Coming soon! Microarchitecture Guide
Coming soon! Platform Guide
A key feature of using BlackParrot is that it has been heavily validated in both silicon and FPGA implementations. All BlackParrot tapeouts and FPGA environments can be found at BlackParrot Examples. Taped out BlackParrot yourself and want to share tips and tricks? Let us know and we can add it to the collection! Looking to implement BlackParrot in a physical system? Take a look at our CAD Backend Guide.
Upon commit to the listed branch, a functional regression consisting of full-system tests and module level tests is run and checked for correctness. Additionally, the design is checked with Synopsys DC to verify synthesizability. Work is in progress to continuously monitor PPA.
If used for academic research, please cite:
D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao, Z. Azad, S. Canakci, B. Veluri, T. Guarino, A. J. Joshi, M. Oskin, M. B. Taylor, "BlackParrot: An Agile Open Source RISC-V Multicore for Accelerator SoCs," in IEEE Micro Special Issue on Agile and Open-Source Hardware, July/August, 2020. doi: 10.1109/MM.2020.2996145