This repository has been archived by the owner on Jul 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 276
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Summary: Pull Request resolved: #655 Open source the autoaugment implementation Reviewed By: vreis Differential Revision: D24940146 fbshipit-source-id: 93bf8d61afcdc1c623a697776efcab52971984e3
- Loading branch information
1 parent
8bc1903
commit 7afbd9e
Showing
3 changed files
with
319 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
======================================================================= | ||
AutoAugment's MIT license | ||
======================================================================= | ||
We modified and utilize the AutoAugment implementation from | ||
https://github.com/DeepVoltaire/AutoAugment. The license is as follows: | ||
|
||
MIT License | ||
|
||
Copyright (c) 2018 Philip Popien | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
#!/usr/bin/env python3 | ||
# Portions Copyright (c) Facebook, Inc. and its affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
# MIT License | ||
# | ||
# Copyright (c) 2018 Philip Popien | ||
# | ||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
# | ||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
# | ||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
# Code modified from | ||
# https://github.com/DeepVoltaire/AutoAugment/blob/master/autoaugment.py | ||
|
||
import random | ||
import random | ||
from enum import Enum, auto | ||
from functools import partial | ||
from typing import Any | ||
from typing import Tuple, Any, NamedTuple, Sequence, Callable | ||
|
||
import numpy as np | ||
from classy_vision.dataset.transforms import ClassyTransform, register_transform | ||
from PIL import Image, ImageEnhance, ImageOps | ||
|
||
|
||
MIDDLE_GRAY = (128, 128, 128) | ||
|
||
|
||
class ImageOp(Enum): | ||
SHEAR_X = auto() | ||
SHEAR_Y = auto() | ||
TRANSLATE_X = auto() | ||
TRANSLATE_Y = auto() | ||
ROTATE = auto() | ||
AUTO_CONTRAST = auto() | ||
INVERT = auto() | ||
EQUALIZE = auto() | ||
SOLARIZE = auto() | ||
POSTERIZE = auto() | ||
CONTRAST = auto() | ||
COLOR = auto() | ||
BRIGHTNESS = auto() | ||
SHARPNESS = auto() | ||
|
||
|
||
class ImageOpSetting(NamedTuple): | ||
ranges: Sequence | ||
function: Callable | ||
|
||
|
||
def shear_x(img: Any, magnitude: int, fillcolor: Any = None) -> Any: | ||
return img.transform( | ||
img.size, | ||
Image.AFFINE, | ||
(1, magnitude * random.choice([-1, 1]), 0, 0, 1, 0), | ||
Image.BICUBIC, | ||
fillcolor=fillcolor, | ||
) | ||
|
||
|
||
def shear_y(img: Any, magnitude: int, fillcolor: Any = None) -> Any: | ||
return img.transform( | ||
img.size, | ||
Image.AFFINE, | ||
(1, 0, 0, magnitude * random.choice([-1, 1]), 1, 0), | ||
Image.BICUBIC, | ||
fillcolor=fillcolor, | ||
) | ||
|
||
|
||
def translate_x(img: Any, magnitude: int, fillcolor: Any = None) -> Any: | ||
return img.transform( | ||
img.size, | ||
Image.AFFINE, | ||
(1, 0, magnitude * img.size[0] * random.choice([-1, 1]), 0, 1, 0), | ||
fillcolor=fillcolor, | ||
) | ||
|
||
|
||
def translate_y(img: Any, magnitude: int, fillcolor: Any = None) -> Any: | ||
return img.transform( | ||
img.size, | ||
Image.AFFINE, | ||
(1, 0, 0, 0, 1, magnitude * img.size[1] * random.choice([-1, 1])), | ||
fillcolor=fillcolor, | ||
) | ||
|
||
|
||
# from https://stackoverflow.com/questions/5252170/specify-image-filling-color-when-rotating-in-python-with-pil-and-setting-expand # noqa | ||
def rotate_with_fill(img: Any, magnitude: int) -> Any: | ||
rot = img.convert("RGBA").rotate(magnitude) | ||
return Image.composite(rot, Image.new("RGBA", rot.size, (128,) * 4), rot).convert( | ||
img.mode | ||
) | ||
|
||
|
||
def color(img: Any, magnitude: int) -> Any: | ||
return ImageEnhance.Color(img).enhance(1 + magnitude * random.choice([-1, 1])) | ||
|
||
|
||
def posterize(img: Any, magnitude: int) -> Any: | ||
return ImageOps.posterize(img, magnitude) | ||
|
||
|
||
def solarize(img: Any, magnitude: int) -> Any: | ||
return ImageOps.solarize(img, magnitude) | ||
|
||
|
||
def contrast(img: Any, magnitude: int) -> Any: | ||
return ImageEnhance.Contrast(img).enhance(1 + magnitude * random.choice([-1, 1])) | ||
|
||
|
||
def sharpness(img: Any, magnitude: int) -> Any: | ||
return ImageEnhance.Sharpness(img).enhance(1 + magnitude * random.choice([-1, 1])) | ||
|
||
|
||
def brightness(img: Any, magnitude: int) -> Any: | ||
return ImageEnhance.Brightness(img).enhance(1 + magnitude * random.choice([-1, 1])) | ||
|
||
|
||
def auto_contrast(img: Any, magnitude: int) -> Any: | ||
return ImageOps.autocontrast(img) | ||
|
||
|
||
def equalize(img: Any, magnitude: int) -> Any: | ||
return ImageOps.equalize(img) | ||
|
||
|
||
def invert(img: Any, magnitude: int) -> Any: | ||
return ImageOps.invert(img) | ||
|
||
|
||
def get_image_op_settings( | ||
image_op: ImageOp, fillcolor: Tuple[int, int, int] = MIDDLE_GRAY | ||
): | ||
return { | ||
ImageOp.SHEAR_X: ImageOpSetting( | ||
np.linspace(0, 0.3, 10), partial(shear_x, fillcolor=fillcolor) | ||
), | ||
ImageOp.SHEAR_Y: ImageOpSetting( | ||
np.linspace(0, 0.3, 10), partial(shear_y, fillcolor=fillcolor) | ||
), | ||
ImageOp.TRANSLATE_X: ImageOpSetting( | ||
np.linspace(0, 150 / 331, 10), partial(translate_x, fillcolor=fillcolor) | ||
), | ||
ImageOp.TRANSLATE_Y: ImageOpSetting( | ||
np.linspace(0, 150 / 331, 10), partial(translate_y, fillcolor=fillcolor) | ||
), | ||
ImageOp.ROTATE: ImageOpSetting(np.linspace(0, 30, 10), rotate_with_fill), | ||
ImageOp.COLOR: ImageOpSetting(np.linspace(0.0, 0.9, 10), color), | ||
ImageOp.POSTERIZE: ImageOpSetting( | ||
np.round(np.linspace(8, 4, 10), 0).astype(np.int), posterize | ||
), | ||
ImageOp.SOLARIZE: ImageOpSetting(np.linspace(256, 0, 10), solarize), | ||
ImageOp.CONTRAST: ImageOpSetting(np.linspace(0.0, 0.9, 10), contrast), | ||
ImageOp.SHARPNESS: ImageOpSetting(np.linspace(0.0, 0.9, 10), sharpness), | ||
ImageOp.BRIGHTNESS: ImageOpSetting(np.linspace(0.0, 0.9, 10), brightness), | ||
ImageOp.AUTO_CONTRAST: ImageOpSetting([0] * 10, auto_contrast), | ||
ImageOp.EQUALIZE: ImageOpSetting([0] * 10, equalize), | ||
ImageOp.INVERT: ImageOpSetting([0] * 10, invert), | ||
}[image_op] | ||
|
||
|
||
class SubPolicy: | ||
def __init__( | ||
self, | ||
operation1: ImageOp, | ||
magnitude_idx1: int, | ||
p1: float, | ||
operation2: ImageOp, | ||
magnitude_idx2: int, | ||
p2: float, | ||
fillcolor: Tuple[int, int, int] = MIDDLE_GRAY, | ||
) -> None: | ||
operation1_settings = get_image_op_settings(operation1, fillcolor) | ||
self.operation1 = operation1_settings.function | ||
self.magnitude1 = operation1_settings.ranges[magnitude_idx1] | ||
self.p1 = p1 | ||
|
||
operation2_settings = get_image_op_settings(operation2, fillcolor) | ||
self.operation2 = operation2_settings.function | ||
self.magnitude2 = operation2_settings.ranges[magnitude_idx2] | ||
self.p2 = p2 | ||
|
||
def __call__(self, img: Any) -> Any: | ||
if random.random() < self.p1: | ||
img = self.operation1(img, self.magnitude1) | ||
if random.random() < self.p2: | ||
img = self.operation2(img, self.magnitude2) | ||
return img | ||
|
||
|
||
@register_transform("imagenet_autoaugment") | ||
class ImagenetAutoAugment(ClassyTransform): | ||
"""Randomly choose one of the best 24 Sub-policies on ImageNet. | ||
Example: | ||
>>> policy = ImageNetPolicy() | ||
>>> transformed = policy(image) | ||
Example as a PyTorch Transform: | ||
>>> transform=transforms.Compose([ | ||
>>> transforms.Resize(256), | ||
>>> ImageNetPolicy(), | ||
>>> transforms.ToTensor()]) | ||
""" | ||
|
||
def __init__(self, fillcolor: Tuple[int, int, int] = MIDDLE_GRAY) -> None: | ||
self.policies = [ | ||
SubPolicy(ImageOp.POSTERIZE, 8, 0.4, ImageOp.ROTATE, 9, 0.6, fillcolor), | ||
SubPolicy( | ||
ImageOp.SOLARIZE, 5, 0.6, ImageOp.AUTO_CONTRAST, 5, 0.6, fillcolor | ||
), | ||
SubPolicy(ImageOp.EQUALIZE, 8, 0.8, ImageOp.EQUALIZE, 3, 0.6, fillcolor), | ||
SubPolicy(ImageOp.POSTERIZE, 7, 0.6, ImageOp.POSTERIZE, 6, 0.6, fillcolor), | ||
SubPolicy(ImageOp.EQUALIZE, 7, 0.4, ImageOp.SOLARIZE, 4, 0.2, fillcolor), | ||
SubPolicy(ImageOp.EQUALIZE, 4, 0.4, ImageOp.ROTATE, 8, 0.8, fillcolor), | ||
SubPolicy(ImageOp.SOLARIZE, 3, 0.6, ImageOp.EQUALIZE, 7, 0.6, fillcolor), | ||
SubPolicy(ImageOp.POSTERIZE, 5, 0.8, ImageOp.EQUALIZE, 2, 1.0, fillcolor), | ||
SubPolicy(ImageOp.ROTATE, 3, 0.2, ImageOp.SOLARIZE, 8, 0.6, fillcolor), | ||
SubPolicy(ImageOp.EQUALIZE, 8, 0.6, ImageOp.POSTERIZE, 6, 0.4, fillcolor), | ||
SubPolicy(ImageOp.ROTATE, 8, 0.8, ImageOp.COLOR, 0, 0.4, fillcolor), | ||
SubPolicy(ImageOp.ROTATE, 9, 0.4, ImageOp.EQUALIZE, 2, 0.6, fillcolor), | ||
SubPolicy(ImageOp.EQUALIZE, 7, 0.0, ImageOp.EQUALIZE, 8, 0.8, fillcolor), | ||
SubPolicy(ImageOp.INVERT, 4, 0.6, ImageOp.EQUALIZE, 8, 1.0, fillcolor), | ||
SubPolicy(ImageOp.COLOR, 4, 0.6, ImageOp.CONTRAST, 8, 1.0, fillcolor), | ||
SubPolicy(ImageOp.ROTATE, 8, 0.8, ImageOp.COLOR, 2, 1.0, fillcolor), | ||
SubPolicy(ImageOp.COLOR, 8, 0.8, ImageOp.SOLARIZE, 7, 0.8, fillcolor), | ||
SubPolicy(ImageOp.SHARPNESS, 7, 0.4, ImageOp.INVERT, 8, 0.6, fillcolor), | ||
SubPolicy(ImageOp.SHEAR_X, 5, 0.6, ImageOp.EQUALIZE, 9, 1.0, fillcolor), | ||
SubPolicy(ImageOp.COLOR, 0, 0.4, ImageOp.EQUALIZE, 3, 0.6, fillcolor), | ||
SubPolicy(ImageOp.EQUALIZE, 7, 0.4, ImageOp.SOLARIZE, 4, 0.2, fillcolor), | ||
SubPolicy( | ||
ImageOp.SOLARIZE, 5, 0.6, ImageOp.AUTO_CONTRAST, 5, 0.6, fillcolor | ||
), | ||
SubPolicy(ImageOp.INVERT, 4, 0.6, ImageOp.EQUALIZE, 8, 1.0, fillcolor), | ||
SubPolicy(ImageOp.COLOR, 4, 0.6, ImageOp.CONTRAST, 8, 1.0, fillcolor), | ||
] | ||
|
||
def __call__(self, img: Any) -> Any: | ||
policy_idx = random.randint(0, len(self.policies) - 1) | ||
return self.policies[policy_idx](img) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Facebook, Inc. and its affiliates. | ||
# | ||
# This source code is licensed under the MIT license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import unittest | ||
|
||
from classy_vision.dataset.core.random_image_datasets import ( | ||
RandomImageBinaryClassDataset, | ||
) | ||
from classy_vision.dataset.transforms.autoaugment import ImagenetAutoAugment # noqa | ||
from classy_vision.dataset.transforms.util import build_field_transform_default_imagenet | ||
|
||
|
||
class AutoaugmentTransformTest(unittest.TestCase): | ||
def get_test_image_dataset(self): | ||
return RandomImageBinaryClassDataset( | ||
crop_size=224, class_ratio=0.5, num_samples=100, seed=0 | ||
) | ||
|
||
def test_imagenet_autoaugment_transform_no_errors(self): | ||
""" | ||
Tests that the imagenet autoaugment transform runs without any errors. | ||
""" | ||
dataset = self.get_test_image_dataset() | ||
|
||
config = [{"name": "imagenet_autoaugment"}] | ||
transform = build_field_transform_default_imagenet(config) | ||
sample = dataset[0] | ||
# test that imagenet autoaugment has been registered and runs without errors | ||
transform(sample) |