Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adding spacy-universal-sentence-encoder #5534

Merged
merged 3 commits into from
Jun 8, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/contributors/MartinoMensio.md
Original file line number Diff line number Diff line change
Expand Up @@ -99,8 +99,8 @@ mark both statements:
| Field | Entry |
|------------------------------- | -------------------- |
| Name | Martino Mensio |
| Company name (if applicable) | Polytechnic University of Turin |
| Title or role (if applicable) | Student |
| Company name (if applicable) | The Open University |
| Title or role (if applicable) | PhD Student |
| Date | 17 November 2017 |
| GitHub username | MartinoMensio |
| Website (optional) | https://martinomensio.github.io/ |
24 changes: 24 additions & 0 deletions website/meta/universe.json
Original file line number Diff line number Diff line change
@@ -1,5 +1,29 @@
{
"resources": [
{
"id": "spacy-universal-sentence-encoder",
"title": "SpaCy - Universal Sentence Encoder",
"slogan": "Make use of Google's Universal Sentence Encoder directly within SpaCy",
"description": "This library lets you use Universal Sentence Encoder embeddings of Docs, Spans and Tokens directly from TensorFlow Hub",
"github": "MartinoMensio/spacy-universal-sentence-encoder-tfhub",
"code_example": [
"import spacy_universal_sentence_encoder",
"load one of the models: ['en_use_md', 'en_use_lg', 'xx_use_md', 'xx_use_lg']",
"nlp = spacy_universal_sentence_encoder.load_model('en_use_lg')",
"# get two documents",
"doc_1 = nlp('Hi there, how are you?')",
"doc_2 = nlp('Hello there, how are you doing today?')",
"# use the similarity method that is based on the vectors, on Doc, Span or Token",
"print(doc_1.similarity(doc_2[0:7]))"
],
"category": ["models", "pipeline"],
"author": "Martino Mensio",
"author_links": {
"twitter": "MartinoMensio",
"github": "MartinoMensio",
"website": "https://martinomensio.github.io"
}
},
{
"id": "whatlies",
"title": "whatlies",
Expand Down