-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added benchmarks for pi0 and photon as well
- Loading branch information
Showing
11 changed files
with
985 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
rule femc_photon_generate: | ||
input: | ||
script="benchmarks/femc_photon/analysis/gen_particles.cxx", | ||
params: | ||
NEVENTS_GEN=1000, | ||
th_max=28, | ||
th_min=2.0 | ||
output: | ||
GEN_FILE="sim_output/femc_photon/photon_{P}GeV.hepmc" | ||
shell: | ||
""" | ||
mkdir -p sim_output/femc_photon | ||
root -l -b -q '{input.script}({params.NEVENTS_GEN},"{output.GEN_FILE}", "gamma", {params.th_min}, {params.th_max}, 0., 360., {wildcards.P})' | ||
""" | ||
|
||
rule femc_photon_simulate: | ||
input: | ||
GEN_FILE="sim_output/femc_photon/photon_{P}GeV.hepmc" | ||
params: | ||
PHYSICS_LIST="FTFP_BERT" | ||
output: | ||
SIM_FILE="sim_output/femc_photon/{DETECTOR_CONFIG}_sim_photon_{P}GeV.edm4hep.root" | ||
shell: | ||
""" | ||
NEVENTS_SIM=1000 | ||
# Running simulation | ||
npsim \ | ||
--compactFile $DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml \ | ||
--numberOfEvents $NEVENTS_SIM \ | ||
--physicsList {params.PHYSICS_LIST} \ | ||
--inputFiles {input.GEN_FILE} \ | ||
--outputFile {output.SIM_FILE} | ||
""" | ||
|
||
rule femc_photon_recon: | ||
input: | ||
SIM_FILE="sim_output/femc_photon/{DETECTOR_CONFIG}_sim_photon_{P}GeV.edm4hep.root" | ||
output: | ||
REC_FILE="sim_output/femc_photon/{DETECTOR_CONFIG}_rec_photon_{P}GeV.edm4hep.root" | ||
shell: | ||
""" | ||
NEVENTS_REC=1000 | ||
eicrecon {input.SIM_FILE} -Ppodio:output_file={output.REC_FILE} -Pdd4hep:xml_files=$DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml -Ppodio:output_collections=MCParticles,HcalEndcapPInsertRecHits,HcalEndcapPInsertClusters,HcalEndcapPInsertSubcellHits,EcalEndcapPInsertRecHits,EcalEndcapPInsertClusters,EcalEndcapPInsertRecHits,EcalEndcapPClusters -Pjana:nevents=$NEVENTS_REC | ||
""" | ||
|
||
rule femc_photon_analysis: | ||
input: | ||
expand("sim_output/femc_photon/{DETECTOR_CONFIG}_rec_photon_{P}GeV.edm4hep.root", | ||
P=[20, 30, 40, 50, 60, 70, 80], | ||
DETECTOR_CONFIG=["{DETECTOR_CONFIG}"], | ||
particle=["{particle}"]), | ||
script="benchmarks/femc_photon/analysis/femc_photon_plots.py", | ||
output: | ||
results_dir=directory("results/{DETECTOR_CONFIG}/femc_photon"), | ||
shell: | ||
""" | ||
mkdir -p {output.results_dir} | ||
python {input.script} {output.results_dir} | ||
""" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
import numpy as np, pandas as pd, matplotlib.pyplot as plt, matplotlib as mpl, awkward as ak, sys, uproot as ur | ||
import mplhep as hep | ||
hep.style.use("CMS") | ||
|
||
plt.rcParams['figure.facecolor']='white' | ||
plt.rcParams['savefig.facecolor']='white' | ||
plt.rcParams['savefig.bbox']='tight' | ||
|
||
plt.rcParams["figure.figsize"] = (7, 7) | ||
|
||
config=sys.argv[1].split("/")[1] #results/{config}/{benchmark_name} | ||
outdir=sys.argv[1]+"/" | ||
try: | ||
import os | ||
os.mkdir(outdir[:-1]) | ||
except: | ||
pass | ||
|
||
import uproot as ur | ||
arrays_sim={p:ur.open(f'sim_output/femc_photon/{config}_rec_e-_{p}GeV.edm4hep.root:events').arrays() for p in (20, 30, 40, 50, 60,70,80)} | ||
|
||
for p in arrays_sim: | ||
array=arrays_sim[p] | ||
tilt=-.025 | ||
px=array['MCParticles.momentum.x'][:,2] | ||
py=array['MCParticles.momentum.y'][:,2] | ||
pz=array['MCParticles.momentum.z'][:,2] | ||
p=np.sqrt(px**2+py**2+pz**2) | ||
|
||
pxp=px*np.cos(tilt)-pz*np.sin(tilt) | ||
pyp=py | ||
pzp=pz*np.cos(tilt)+px*np.sin(tilt) | ||
|
||
array['eta_truth']=1/2*np.log((p+pzp)/(p-pzp)) | ||
array['nclust_endcap']=[len(array['EcalEndcapPClusters.energy'][i]) for i in range(len(array))] | ||
|
||
for array in arrays_sim.values(): | ||
tilt=-0.025 | ||
px=array['MCParticles.momentum.x'][:,2] | ||
py=array['MCParticles.momentum.y'][:,2] | ||
pz=array['MCParticles.momentum.z'][:,2] | ||
p=np.sqrt(px**2+py**2+pz**2) | ||
|
||
pxp=px*np.cos(tilt)-pz*np.sin(tilt) | ||
pyp=py | ||
pzp=pz*np.cos(tilt)+px*np.sin(tilt) | ||
|
||
array['eta_truth']=1/2*np.log((p+pzp)/(p-pzp)) | ||
array['phi_truth']=np.arctan2(pyp,pxp) | ||
|
||
#number of clusters | ||
plt.figure() | ||
for eta_min, eta_max, field in (1.5, 2.8, 'nclust_endcap'),: | ||
for p in arrays_sim: | ||
array=arrays_sim[p] | ||
plt.hist(array[field][(array['eta_truth']>eta_min)&(array['eta_truth']<eta_max)], | ||
bins=np.linspace(0,10,11), histtype='step', label=f'{p} GeV', density=True) | ||
plt.ylabel("events") | ||
plt.xlabel("# of Ecal clusters") | ||
plt.legend() | ||
plt.savefig(outdir+f"/{field}.pdf") | ||
|
||
fig, axs=plt.subplots(1,2, figsize=(16,8)) | ||
avgs=[] | ||
stds=[] | ||
pvals=[] | ||
|
||
#number of hits per cluster | ||
fig, axs=plt.subplots(1,2, figsize=(16,8)) | ||
avgs=[] | ||
stds=[] | ||
pvals=[] | ||
|
||
for p in arrays_sim: | ||
|
||
a=arrays_sim[p] | ||
n=[] | ||
nn=-a['EcalEndcapPClusters.hits_begin']+a['EcalEndcapPClusters.hits_end'] | ||
E=a['EcalEndcapPClusters.energy'] | ||
for evt in range(len(array)): | ||
maxE=np.max(E[evt]) | ||
found=False | ||
for i in range(len(E[evt])): | ||
if E[evt][i]==maxE: | ||
n.append(nn[evt][i]) | ||
found=True | ||
break | ||
#if not found: | ||
# n.append(0) | ||
|
||
if p ==50: | ||
plt.sca(axs[0]) | ||
y,x,_=plt.hist(n, range=(0,100), bins=100, histtype='step', label=f"E={p} GeV") | ||
plt.ylabel("events") | ||
plt.xlabel("# hits in cluster") | ||
plt.title(f"e-, E={p} GeV") | ||
pvals.append(p) | ||
avgs.append(np.mean(n)) | ||
stds.append(np.std(n)) | ||
|
||
plt.sca(axs[1]) | ||
plt.errorbar(pvals, avgs, stds, marker='o',ls='') | ||
plt.xlabel("E [GeV]") | ||
plt.ylabel("# hits in cluster [mean$\\pm$std]") | ||
plt.ylim(0) | ||
plt.savefig(outdir+"/nhits_per_cluster.pdf") | ||
|
||
|
||
#energy resolution | ||
def gauss(x, A,mu, sigma): | ||
return A * np.exp(-(x-mu)**2/(2*sigma**2)) | ||
from scipy.optimize import curve_fit | ||
|
||
fig, axs=plt.subplots(1,3, figsize=(24,8)) | ||
pvals=[] | ||
res=[] | ||
dres=[] | ||
scale=[] | ||
dscale=[] | ||
for p in arrays_sim: | ||
bins=np.linspace(15*p/20,22*p/20, 50) | ||
if p==50: | ||
plt.sca(axs[0]) | ||
plt.title(f"E={p} GeV") | ||
y,x,_=plt.hist(ak.flatten(arrays_sim[p]['EcalEndcapPClusters.energy']), bins=bins, histtype='step') | ||
plt.ylabel("events") | ||
plt.xlabel("$E^{rec}_e$ [GeV]") | ||
else: | ||
y,x=np.histogram(ak.flatten(arrays_sim[p]['EcalEndcapPClusters.energy']), bins=bins) | ||
bcs=(x[1:]+x[:-1])/2 | ||
|
||
fnc=gauss | ||
slc=abs(bcs-p)<3 | ||
sigma=np.sqrt(y[slc])+0.5*(y[slc]==0) | ||
p0=(100, p, 3) | ||
|
||
coeff, var_matrix = curve_fit(fnc, list(bcs[slc]), list(y[slc]), p0=p0,sigma=list(sigma)) | ||
#res=np.abs(coeff[2]/coeff[1]) | ||
if p==50: | ||
xx=np.linspace(15*p/20,22*p/20, 100) | ||
|
||
plt.plot(xx, fnc(xx,*coeff), label=f"$\\sigma_E/E={abs(coeff[2])/coeff[1]*100:.1f}\%$") | ||
plt.axvline(p, color='g', ls='--', alpha=0.7) | ||
plt.legend() | ||
#plt.xlim(0,60) | ||
#plt.show() | ||
pvals.append(p) | ||
res.append(abs(coeff[2])/coeff[1]) | ||
dres.append(np.sqrt(var_matrix[2][2])/coeff[1]) | ||
scale.append(abs(coeff[1])/p) | ||
dscale.append(np.sqrt(var_matrix[1][1])/p) | ||
plt.sca(axs[1]) | ||
plt.errorbar(pvals, 100*np.array(res), 100*np.array(dres), ls='', marker='o') | ||
fnc = lambda E, a, b: np.hypot(a,b/np.sqrt(E)) | ||
p0=(.05, .12) | ||
coeff, var_matrix = curve_fit(fnc, pvals, res, p0=p0,sigma=dres) | ||
xx=np.linspace(15, 85, 100) | ||
plt.plot(xx, 100*fnc(xx,*coeff), label=f'fit:{100*coeff[0]:.0f}%$\\oplus\\frac{{{100*coeff[1]:.1f}\\%}}{{\\sqrt{{E}}}}$') | ||
plt.legend() | ||
plt.ylim(0) | ||
plt.ylabel("E resolution [%]") | ||
plt.xlabel("E truth [GeV]") | ||
plt.sca(axs[2]) | ||
|
||
plt.errorbar(pvals, 100*np.array(scale), 100*np.array(dscale), ls='', marker='o') | ||
plt.ylabel("energy scale [%]") | ||
plt.xlabel("E truth [GeV]") | ||
plt.axhline(100, color='0.5', alpha=0.5, ls='--') | ||
plt.ylim(0, 110) | ||
plt.tight_layout() | ||
plt.savefig(outdir+"/energy_res.pdf") |
Oops, something went wrong.