-
Notifications
You must be signed in to change notification settings - Fork 706
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding easyconfigs: tomoDRGN-1.0.0-foss-2023a-CUDA-12.1.1.eb and patc…
…hes: tomoDRGN-1.0.0_use-PyTorch-2.1.patch
- Loading branch information
1 parent
c434a59
commit f1d1fbe
Showing
2 changed files
with
158 additions
and
0 deletions.
There are no files selected for viewing
92 changes: 92 additions & 0 deletions
92
easybuild/easyconfigs/t/tomoDRGN/tomoDRGN-1.0.0-foss-2023a-CUDA-12.1.1.eb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
# Thomas Hoffmann, EMBL Heidelber, [email protected], 2024/12 | ||
easyblock = 'PythonBundle' | ||
|
||
name = 'tomoDRGN' | ||
version = '1.0.0' | ||
versionsuffix = '-CUDA-%(cudaver)s' | ||
|
||
homepage = 'https://github.com/bpowell122/tomodrgn/' | ||
description = """CryoDRGN has proven a powerful deep learning method for heterogeneity analysis | ||
in single particle cryo-EM. In particular, the method models a continuous | ||
distribution over 3D structures by using a Variational Auto-Encoder (VAE) based | ||
architecture to generate a reconstruction voxel-by-voxel once given a fixed | ||
coordinate from a continuous learned latent space. | ||
TomoDRGN extends the cryoDRGN framework to cryo-ET by learning heterogeneity | ||
from datasets in which each particle is sampled by multiple projection images at | ||
different stage tilt angles. For cryo-ET samples imaging particles in situ, | ||
tomoDRGN therefore enables continuous heterogeneity analysis at a single | ||
particle level within the native cellular environment. This new type of input | ||
necessitates modification of the cryoDRGN architecture, enables tomography- | ||
specific processing opportunities (e.g. dose weighting for loss weighting and | ||
efficient voxel subset evaluation during training), and benefits from | ||
tomography-specific interactive visualizations. | ||
""" | ||
|
||
toolchain = {'name': 'foss', 'version': '2023a'} | ||
|
||
builddependencies = [ | ||
('nodejs', '18.17.1'), | ||
('poetry', '1.5.1') | ||
] | ||
dependencies = [ | ||
('Python', '3.11.3'), | ||
('CUDA', '12.1.1', '', SYSTEM), | ||
('JupyterNotebook', '7.0.2'), | ||
('SciPy-bundle', '2023.07'), | ||
('PyTorch', '2.1.2', versionsuffix), | ||
('scikit-learn', '1.3.1'), | ||
('matplotlib', '3.7.2'), | ||
('umap-learn', '0.5.5'), | ||
('plotly.py', '5.16.0'), | ||
('healpy', '1.16.6'), | ||
('Seaborn', '0.13.2'), | ||
('IPython', '8.14.0'), | ||
('einops', '0.7.0'), | ||
('adjustText', '0.7.3'), | ||
] | ||
|
||
use_pip = True | ||
sanity_pip_check = True | ||
|
||
exts_list = [ | ||
('fastcluster', '1.2.6', { | ||
'checksums': ['aab886efa7b6bba7ac124f4498153d053e5a08b822d2254926b7206cdf5a8aa6'], | ||
}), | ||
('importlib_resources', '5.12.0', { | ||
'checksums': ['4be82589bf5c1d7999aedf2a45159d10cb3ca4f19b2271f8792bc8e6da7b22f6'], | ||
}), | ||
('torchinfo', '1.8.0', { | ||
'checksums': ['72e94b0e9a3e64dc583a8e5b7940b8938a1ac0f033f795457f27e6f4e7afa2e9'], | ||
}), | ||
(name, version, { | ||
'patches': ['%(name)s-%(version)s_use-PyTorch-2.1.patch'], | ||
'preinstallopts': "export SETUPTOOLS_SCM_PRETEND_VERSION=%(version)s &&", | ||
'source_urls': ['https://github.com/bpowell122/tomodrgn/archive/refs/tags/'], | ||
'sources': {'download_filename': 'v%(version)s.tar.gz', 'filename': '%(name)s-%(version)s.tar.gz'}, | ||
'checksums': [ | ||
{'tomoDRGN-1.0.0.tar.gz': '8b243d17af655c5088b30b4a9476072eb79e144b0a9ec1be549457c11abdd2d7'}, | ||
{'tomoDRGN-1.0.0_use-PyTorch-2.1.patch': | ||
'5c7c1bec937ca245c999d2815f9345882950ae3da23432704efb7fb3e61f512b'}, | ||
], | ||
}), | ||
] | ||
|
||
postinstallcmds = [ | ||
# required? | ||
'mkdir %(installdir)s/share/jupyter/labextensions -p', | ||
'export JUPYTERLAB_DIR=%(installdir)s/share/jupyter/labextensions ' | ||
'&& jupyter labextension install jupyterlab-datawidgets' | ||
] | ||
|
||
|
||
sanity_check_paths = { | ||
'files': ['bin/%(namelower)s'], | ||
'dirs': ['share/jupyter/labextensions'] | ||
} | ||
|
||
modextravars = {'JUPYTERLAB_DIR': '%(installdir)s/share/jupyter/labextensions'} # required? | ||
|
||
sanity_check_commands = ['%(namelower)s -h'] | ||
|
||
moduleclass = 'chem' |
66 changes: 66 additions & 0 deletions
66
easybuild/easyconfigs/t/tomoDRGN/tomoDRGN-1.0.0_use-PyTorch-2.1.patch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
# Downgrade to PyTorch 2.1.2 (CUDA): | ||
# relax requirement torch >= 2.3 to 2.1 | ||
# replace any occurrence torch.amp.GradScaler by conditional torch.cuda.amp / torch.cpu.amp | ||
diff -ru tomodrgn-1.0.0/pyproject.toml tomodrgn-1.0.0_relax_requirements/pyproject.toml | ||
--- tomodrgn-1.0.0/pyproject.toml 2024-11-15 21:15:46.000000000 +0100 | ||
+++ tomodrgn-1.0.0_relax_requirements/pyproject.toml 2024-12-16 15:36:11.187436498 +0100 | ||
@@ -31,7 +31,7 @@ | ||
"scikit-learn", | ||
"scipy>=1.3.1", | ||
"seaborn", | ||
- "torch>=2.3", | ||
+ "torch>=2.1", | ||
"torchinfo", | ||
"typing_extensions>=3.7.4", | ||
"umap-learn", | ||
diff -ru tomodrgn-1.0.0/tomodrgn/commands/train_nn.py tomodrgn-1.0.0_relax_requirements/tomodrgn/commands/train_nn.py | ||
--- tomodrgn-1.0.0/tomodrgn/commands/train_nn.py 2024-11-15 21:15:46.000000000 +0100 | ||
+++ tomodrgn-1.0.0_relax_requirements/tomodrgn/commands/train_nn.py 2024-12-17 10:58:56.367688173 +0100 | ||
@@ -145,7 +145,7 @@ | ||
|
||
|
||
def train_batch(model: FTPositionalDecoder | DataParallelPassthrough, | ||
- scaler: torch.amp.GradScaler, | ||
+ scaler: torch.cuda.amp.GradScaler, | ||
optim: torch.optim.Optimizer, | ||
lat: Lattice, | ||
batch_images: torch.Tensor, | ||
@@ -402,7 +402,7 @@ | ||
# Mixed precision training with AMP | ||
use_amp = not args.no_amp | ||
flog(f'AMP acceleration enabled (autocast + gradscaler) : {use_amp}') | ||
- scaler = torch.amp.GradScaler(device=device.type, enabled=use_amp) | ||
+ scaler = torch.cuda.amp.GradScaler(enabled=use_amp) if device.type == 'cuda' else torch.cpu.amp.GradScaler(enabled=use_amp) | ||
if use_amp: | ||
if not args.batch_size % 8 == 0: | ||
flog('Warning: recommended to have batch size divisible by 8 for AMP training') | ||
diff -ru tomodrgn-1.0.0/tomodrgn/commands/train_vae.py tomodrgn-1.0.0_relax_requirements/tomodrgn/commands/train_vae.py | ||
--- tomodrgn-1.0.0/tomodrgn/commands/train_vae.py 2024-11-15 21:15:46.000000000 +0100 | ||
+++ tomodrgn-1.0.0_relax_requirements/tomodrgn/commands/train_vae.py 2024-12-17 10:59:45.399859026 +0100 | ||
@@ -118,7 +118,7 @@ | ||
|
||
def train_batch(*, | ||
model: TiltSeriesHetOnlyVAE | DataParallelPassthrough, | ||
- scaler: torch.amp.GradScaler, | ||
+ scaler: torch.cuda.amp.GradScaler, | ||
optim: torch.optim.Optimizer, | ||
lat: Lattice, | ||
batch_images: torch.Tensor, | ||
@@ -442,7 +442,7 @@ | ||
|
||
def save_checkpoint(*, | ||
model: TiltSeriesHetOnlyVAE | DataParallelPassthrough, | ||
- scaler: torch.amp.GradScaler, | ||
+ scaler: torch.cuda.amp.GradScaler, | ||
optim: torch.optim.Optimizer, | ||
epoch: int, | ||
z_mu_train: np.ndarray, | ||
@@ -692,7 +692,7 @@ | ||
# Mixed precision training with AMP | ||
use_amp = not args.no_amp | ||
flog(f'AMP acceleration enabled (autocast + gradscaler) : {use_amp}') | ||
- scaler = torch.amp.GradScaler(device=device.type, enabled=use_amp) | ||
+ scaler = torch.cuda.amp.GradScaler(enabled=use_amp) if device.type == 'cuda' else torch.cpu.amp.GradScaler(enabled=use_amp) | ||
if use_amp: | ||
if not args.batch_size % 8 == 0: | ||
flog('Warning: recommended to have batch size divisible by 8 for AMP training') |