SageMaker TensorFlow Serving Container is an a open source project that builds Docker images for running TensorFlow Serving on Amazon SageMaker.
This documentation covers building, testing and using these Docker images.
For information about using TensorFlow Serving on SageMaker, see: Deploying to TensorFlow Serving Endpoints in the SageMaker Python SDK documentation.
For notebook examples, see: Amazon SageMaker Examples.
- Getting Started
- Building your image
- Running the tests
- Pre/Post-Processing
- Deploying a TensorFlow Serving Model
Make sure you have installed all of the following prerequisites on your development machine:
For testing, you will also need:
To test GPU images locally, you will also need:
Note: Some of the build and tests scripts interact with resources in your AWS account. Be sure to
set your default AWS credentials and region using aws configure
before using these scripts.
Amazon SageMaker uses Docker containers to run all training jobs and inference endpoints.
The Docker images are built from the Dockerfiles in docker/.
The Dockerfiles are grouped based on the version of TensorFlow Serving they support. Each supported processor type (e.g. "cpu", "gpu", "ei") has a different Dockerfile in each group.
To build an image, run the ./scripts/build.sh
script:
./scripts/build.sh --version 1.13 --arch cpu
./scripts/build.sh --version 1.13 --arch gpu
./scripts/build.sh --version 1.13 --arch eia
If your are testing locally, building the image is enough. But if you want to your updated image
in SageMaker, you need to publish it to an ECR repository in your account. The
./scripts/publish.sh
script makes that easy:
./scripts/publish.sh --version 1.13 --arch cpu
./scripts/publish.sh --version 1.13 --arch gpu
./scripts/publish.sh --version 1.13 --arch eia
Note: this will publish to ECR in your default region. Use the --region
argument to
specify a different region.
You can also run your container locally in Docker to test different models and input
inference requests by hand. Standard docker run
commands (or nvidia-docker run
for
GPU images) will work for this, or you can use the provided start.sh
and stop.sh
scripts:
./scripts/start.sh [--version x.xx] [--arch cpu|gpu|eia|...]
./scripts/stop.sh [--version x.xx] [--arch cpu|gpu|eia|...]
When the container is running, you can send test requests to it using any HTTP client. Here's
and an example using the curl
command:
curl -X POST --data-binary @test/resources/inputs/test.json \
-H 'Content-Type: application/json' \
-H 'X-Amzn-SageMaker-Custom-Attributes: tfs-model-name=half_plus_three' \
http://localhost:8080/invocations
Additional curl
examples can be found in ./scripts/curl.sh
.
The package includes automated tests and code checks. The tests use Docker to run the container
image locally, and do not access resources in AWS. You can run the tests and static code
checkers using tox
:
tox
To run local tests against a single container or with other options, you can use the following command:
python -m pytest test/integration/local
[--docker-name-base <docker_name_base>]
[--framework-version <framework_version>]
[--processor-type <processor_type>]
To test against Elastic Inference with Accelerator, you will need an AWS account, publish your built image to ECR repository and run the following command:
tox -e py36 -- test/integration/sagemaker/test_ei.py
[--repo <ECR_repository_name>]
[--instance-types <instance_type>,...]
[--accelerator-type <accelerator_type>]
[--versions <version>,...]
For example:
tox -e py36 -- test/integration/sagemaker/test_ei.py \
--repo sagemaker-tensorflow-serving-eia \
--instance_type ml.m5.xlarge \
--accelerator-type ml.eia1.medium \
--versions 1.13.0
SageMaker TensorFlow Serving Container supports the following Content-Types for requests:
application/json
(default)text/csv
application/jsonlines
And the following content types for responses:
application/json
(default)application/jsonlines
The container will convert data in these formats to TensorFlow Serving REST API requests, and will send these requests to the default serving signature of your SavedModel bundle.
You can also add customized Python code to process your input and output data. To use this feature, you need to:
- Add a python file named
inference.py
to the code directory inside your model archive. - In
inference.py
, implement either a pair ofinput_handler
andoutput_handler
functions or a singlehandler
function. Note that ifhandler
function is implemented,input_handler
andoutput_handler
will be ignored.
To implement pre/post-processing handler(s), you will need to make use of the Context
object created by Python service. The Context
is a namedtuple
with following attributes:
model_name (string)
: the name of the model you will to use for inference, for example 'half_plus_three'model_version (string)
: version of the model, for example '5'method (string)
: inference method, for example, 'predict', 'classify' or 'regress', for more information on methods, please see Classify and Regress API and Predict APIrest_uri (string)
: the TFS REST uri generated by the Python service, for example, 'http://localhost:8501/v1/models/half_plus_three:predict'grpc_uri (string)
: the GRPC port number generated by the Python service, for example, '9000'custom_attributes (string)
: content of 'X-Amzn-SageMaker-Custom-Attributes' header from the original request, for example, 'tfs-model-name=half_plus_three,tfs-method=predict'request_content_type (string)
: the original request content type, defaulted to 'application/json' if not providedaccept_header (string)
: the original request accept type, defaulted to 'application/json' if not providedcontent_length (int)
: content length of the original request
Here's a code example implementing input_handler
and output_handler
. By providing these, the Python service will post the request to TFS REST uri with the data pre-processed by input_handler
and pass the response to output_handler
for post-processing.
import json
def input_handler(data, context):
""" Pre-process request input before it is sent to TensorFlow Serving REST API
Args:
data (obj): the request data, in format of dict or string
context (Context): an object containing request and configuration details
Returns:
(dict): a JSON-serializable dict that contains request body and headers
"""
if context.request_content_type == 'application/json':
# pass through json (assumes it's correctly formed)
d = data.read().decode('utf-8')
return d if len(d) else ''
if context.request_content_type == 'text/csv':
# very simple csv handler
return json.dumps({
'instances': [float(x) for x in data.read().decode('utf-8').split(',')]
})
raise ValueError('{{"error": "unsupported content type {}"}}'.format(
context.request_content_type or "unknown"))
def output_handler(data, context):
"""Post-process TensorFlow Serving output before it is returned to the client.
Args:
data (obj): the TensorFlow serving response
context (Context): an object containing request and configuration details
Returns:
(bytes, string): data to return to client, response content type
"""
if data.status_code != 200:
raise ValueError(data.content.decode('utf-8'))
response_content_type = context.accept_header
prediction = data.content
return prediction, response_content_type
Here's another code example implementing input_handler
and output_handler
to format image data into a TFS request that expects image data as an encoded string rather than as a numeric tensor:
import base64
import io
import json
import requests
def input_handler(data, context):
""" Pre-process request input before it is sent to TensorFlow Serving REST API
Args:
data (obj): the request data stream
context (Context): an object containing request and configuration details
Returns:
(dict): a JSON-serializable dict that contains request body and headers
"""
if context.request_content_type == 'application/x-image':
payload = data.read()
encoded_image = base64.b64encode(payload).decode('utf-8')
instance = [{"b64": encoded_image}]
return json.dumps({"instances": instance})
else:
_return_error(415, 'Unsupported content type "{}"'.format(
context.request_content_type or 'Unknown'))
def output_handler(response, context):
"""Post-process TensorFlow Serving output before it is returned to the client.
Args:
response (obj): the TensorFlow serving response
context (Context): an object containing request and configuration details
Returns:
(bytes, string): data to return to client, response content type
"""
if response.status_code != 200:
_return_error(response.status_code, response.content.decode('utf-8'))
response_content_type = context.accept_header
prediction = response.content
return prediction, response_content_type
def _return_error(code, message):
raise ValueError('Error: {}, {}'.format(str(code), message))
The input_handler
above creates requests that match the input of the following TensorFlow Serving SignatureDef, displayed
using the TensorFlow saved_model_cli
:
signature_def['serving_default']:
The given SavedModel SignatureDef contains the following input(s):
inputs['image_bytes'] tensor_info:
dtype: DT_STRING
shape: (-1)
name: input_tensor:0
The given SavedModel SignatureDef contains the following output(s):
outputs['classes'] tensor_info:
dtype: DT_INT64
shape: (-1)
name: ArgMax:0
outputs['probabilities'] tensor_info:
dtype: DT_FLOAT
shape: (-1, 1001)
name: softmax_tensor:0
Method name is: tensorflow/serving/predict
There are occasions when you might want to have complete control over the request handler. For example, making TFS request (REST or GRPC) to one model, and then making a request to a second model. In this case, you may implement the handler
instead of the input_handler
and output_handler
pair:
import json
import requests
def handler(data, context):
"""Handle request.
Args:
data (obj): the request data
context (Context): an object containing request and configuration details
Returns:
(bytes, string): data to return to client, (optional) response content type
"""
processed_input = _process_input(data, context)
response = requests.post(context.rest_uri, data=processed_input)
return _process_output(response, context)
def _process_input(data, context):
if context.request_content_type == 'application/json':
# pass through json (assumes it's correctly formed)
d = data.read().decode('utf-8')
return d if len(d) else ''
if context.request_content_type == 'text/csv':
# very simple csv handler
return json.dumps({
'instances': [float(x) for x in data.read().decode('utf-8').split(',')]
})
raise ValueError('{{"error": "unsupported content type {}"}}'.format(
context.request_content_type or "unknown"))
def _process_output(data, context):
if data.status_code != 200:
raise ValueError(data.content.decode('utf-8'))
response_content_type = context.accept_header
prediction = data.content
return prediction, response_content_type
You can also bring in external dependencies to help with your data processing. There are 2 ways to do this:
- If your model archive contains
code/requirements.txt
, the container will install the Python dependencies at runtime usingpip install -r
. - If you are working in a network-isolation situation or if you don't want to install dependencies at runtime everytime your Endpoint starts or Batch Transform job runs, you may want to put pre-downloaded dependencies under
code/lib
directory in your model archive, the container will then add the modules to the Python path. Note that if bothcode/lib
andcode/requirements.txt
are present in the model archive, therequirements.txt
will be ignored.
Your untarred model directory structure may look like this if you are using requirements.txt
:
model1
|__[model_version_number]
|__variables
|__saved_model.pb
model2
|__[model_version_number]
|__assets
|__variables
|__saved_model.pb
code
|__inference.py
|__requirements.txt
Your untarred model directory structure may look like this if you have downloaded modules under code/lib
:
model1
|__[model_version_number]
|__variables
|__saved_model.pb
model2
|__[model_version_number]
|__assets
|__variables
|__saved_model.pb
code
|__lib
|__external_module
|__inference.py
To use your TensorFlow Serving model on SageMaker, you first need to create a SageMaker Model. After creating a SageMaker Model, you can use it to create SageMaker Batch Transform Jobs for offline inference, or create SageMaker Endpoints for real-time inference.
A SageMaker Model contains references to a model.tar.gz
file in S3 containing serialized model data, and a Docker image used to serve predictions with that model.
You must package the contents in a model directory (including models, inference.py and external modules) in .tar.gz format in a file named "model.tar.gz" and upload it to S3. If you're on a Unix-based operating system, you can create a "model.tar.gz" using the tar
utility:
tar -czvf model.tar.gz 12345 code
where "12345" is your TensorFlow serving model version which contains your SavedModel.
After uploading your model.tar.gz
to an S3 URI, such as s3://your-bucket/your-models/model.tar.gz
, create a SageMaker Model which will be used to generate inferences. Set PrimaryContainer.ModelDataUrl
to the S3 URI where you uploaded the model.tar.gz
, and set PrimaryContainer.Image
to an image following this format:
520713654638.dkr.ecr.{REGION}.amazonaws.com/sagemaker-tensorflow-serving:{TENSORFLOW_SERVING_VERSION}-{cpu|gpu}
For those using Elastic Inference set the image following this format instead:
520713654638.dkr.ecr.{REGION}.amazonaws.com/sagemaker-tensorflow-serving-eia:{TENSORFLOW_SERVING_VERSION}-cpu
Where REGION
is your AWS region, such as "us-east-1" or "eu-west-1"; TENSORFLOW_SERVING_VERSION
is one of the supported versions: "1.11" or "1.12"; and "gpu" for use on GPU-based instance types like ml.p3.2xlarge, or "cpu" for use on CPU-based instances like ml.c5.xlarge
.
The code examples below show how to create a SageMaker Model from a model.tar.gz
containing a TensorFlow Serving model using the AWS CLI (though you can use any language supported by the AWS SDK) and the SageMaker Python SDK.
timestamp() {
date +%Y-%m-%d-%H-%M-%S
}
MODEL_NAME="image-classification-tfs-$(timestamp)"
MODEL_DATA_URL="s3://my-sagemaker-bucket/model/model.tar.gz"
aws s3 cp model.tar.gz $MODEL_DATA_URL
REGION="us-west-2"
TFS_VERSION="1.12.0"
PROCESSOR_TYPE="gpu"
IMAGE="520713654638.dkr.ecr.$REGION.amazonaws.com/sagemaker-tensorflow-serving:$TFS_VERSION-$PROCESSOR_TYPE"
# See the following document for more on SageMaker Roles:
# https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
ROLE_ARN="[SageMaker-compatible IAM Role ARN]"
aws sagemaker create-model \
--model-name $MODEL_NAME \
--primary-container Image=$IMAGE,ModelDataUrl=$MODEL_DATA_URL \
--execution-role-arn $ROLE_ARN
import os
import sagemaker
from sagemaker.tensorflow.serving import Model
sagemaker_session = sagemaker.Session()
role = 'arn:aws:iam::038453126632:role/service-role/AmazonSageMaker-ExecutionRole-20180718T141171'
bucket = 'am-datasets'
prefix = 'sagemaker/high-throughput-tfs-batch-transform'
s3_path = 's3://{}/{}'.format(bucket, prefix)
model_data = sagemaker_session.upload_data('model.tar.gz',
bucket,
os.path.join(prefix, 'model'))
# The "Model" object doesn't create a SageMaker Model until a Transform Job or Endpoint is created.
tensorflow_serving_model = Model(model_data=model_data,
role=role,
framework_version='1.13',
sagemaker_session=sagemaker_session)
After creating a SageMaker Model, you can refer to the model name to create Transform Jobs and Endpoints. Code examples are given below.
A Batch Transform job runs an offline-inference job using your TensorFlow Serving model. Input data in S3 is converted to HTTP requests, and responses are saved to an output bucket in S3.
TRANSFORM_JOB_NAME="tfs-transform-job"
TRANSFORM_S3_INPUT="s3://my-sagemaker-input-bucket/sagemaker-transform-input-data/"
TRANSFORM_S3_OUTPUT="s3://my-sagemaker-output-bucket/sagemaker-transform-output-data/"
TRANSFORM_INPUT_DATA_SOURCE={S3DataSource={S3DataType="S3Prefix",S3Uri=$TRANSFORM_S3_INPUT}}
CONTENT_TYPE="application/x-image"
INSTANCE_TYPE="ml.p2.xlarge"
INSTANCE_COUNT=2
MAX_PAYLOAD_IN_MB=1
MAX_CONCURRENT_TRANSFORMS=16
aws sagemaker create-transform-job \
--model-name $MODEL_NAME \
--transform-input DataSource=$TRANSFORM_INPUT_DATA_SOURCE,ContentType=$CONTENT_TYPE \
--transform-output S3OutputPath=$TRANSFORM_S3_OUTPUT \
--transform-resources InstanceType=$INSTANCE_TYPE,InstanceCount=$INSTANCE_COUNT \
--max-payload-in-mb $MAX_PAYLOAD_IN_MB \
--max-concurrent-transforms $MAX_CONCURRENT_TRANSFORMS \
--transform-job-name $JOB_NAME
output_path = 's3://my-sagemaker-output-bucket/sagemaker-transform-output-data/'
tensorflow_serving_transformer = tensorflow_serving_model.transformer(
framework_version = '1.12',
instance_count=2,
instance_type='ml.p2.xlarge',
max_concurrent_transforms=16,
max_payload=1,
output_path=output_path)
input_path = 's3://my-sagemaker-input-bucket/sagemaker-transform-input-data/'
tensorflow_serving_transformer.transform(input_path, content_type='application/x-image')
A SageMaker Endpoint hosts your TensorFlow Serving model for real-time inference. The InvokeEndpoint API is used to send data for predictions to your TensorFlow Serving model.
ENDPOINT_CONFIG_NAME="my-endpoint-config"
VARIANT_NAME="TFS"
INITIAL_INSTANCE_COUNT=1
INSTANCE_TYPE="ml.p2.xlarge"
aws sagemaker create-endpoint-config \
--endpoint-config-name $ENDPOINT_CONFIG_NAME \
--production-variants VariantName=$VARIANT_NAME,ModelName=$MODEL_NAME,InitialInstanceCount=$INITIAL_INSTANCE_COUNT,InstanceType=$INSTANCE_TYPE
ENDPOINT_NAME="my-tfs-endpoint"
aws sagemaker create-endpoint \
--endpoint-name $ENDPOINT_NAME \
--endpoint-config-name $ENDPOINT_CONFIG_NAME
BODY="fileb://myfile.jpeg"
CONTENT_TYPE='application/x-image'
OUTFILE="response.json"
aws sagemaker-runtime invoke-endpoint \
--endpoint-name $ENDPOINT_NAME \
--content-type=$CONTENT_TYPE \
--body $BODY \
$OUTFILE
predictor = tensorflow_serving_model.deploy(initial_instance_count=1,
framework_version='1.12',
instance_type='ml.p2.xlarge')
prediction = predictor.predict(data)
You can configure SageMaker TensorFlow Serving Container to batch multiple records together before performing an inference. This uses TensorFlow Serving's underlying batching feature.
You may be able to significantly improve throughput, especially on GPU instances, by enabling and configuring batching. To get the best performance, it may be necessary to tune batching parameters, especially the batch size and batch timeout, to your model, input data, and instance type.
You can set the following environment variables on a SageMaker Model or Transform Job to enable and configure batching:
# Configures whether to enable record batching.
# Defaults to false.
SAGEMAKER_TFS_ENABLE_BATCHING="true"
# Configures how many records
# Corresponds to "max_batch_size" in TensorFlow Serving.
# Defaults to 8.
SAGEMAKER_TFS_MAX_BATCH_SIZE="32"
# Configures how long to wait for a full batch, in microseconds.
# Corresponds to "batch_timeout_micros" in TensorFlow Serving.
# Defaults to 1000 (1ms).
SAGEMAKER_TFS_BATCH_TIMEOUT_MICROS="100000"
# Configures how many batches to process concurrently.
# Corresponds to "num_batch_threads" in TensorFlow Serving
# Defaults to number of CPUs.
SAGEMAKER_TFS_NUM_BATCH_THREADS="16"
# Configures number of batches that can be enqueued.
# Corresponds to "max_enqueued_batches" in TensorFlow Serving.
# Defaults to number of CPUs for real-time inference,
# or arbitrarily large for batch transform (because batch transform).
SAGEMAKER_TFS_MAX_ENQUEUED_BATCHES="10000"
Please read CONTRIBUTING.md for details on our code of conduct, and the process for submitting pull requests to us.
This library is licensed under the Apache 2.0 License.