Skip to content
forked from jinwan1994/PRNet

Official PyTorch implementation of the paper: “Progressive Residual Networks for Image Super-Resolution”.

Notifications You must be signed in to change notification settings

dylan2187/PRNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Progressive Residual Networks for Image Super-Resolution

This repository is for PRNet introduced in the following paper

The code is based on EDSR (PyTorch) and tested on Ubuntu 18.04 environment (Python3.6, PyTorch_0.4.0, CUDA8.0, cuDNN5.1) with Titan X/1080Ti/Xp GPUs. .

PRNet

The architecture of our proposed Progressive Residual Networks (PRNet). The details about our proposed PRNet can be found in our main paper.

If you find our work useful in your research or publications, please consider citing:

@article{Jin2020Progressive,
  title={Progressive residual networks for image super-resolution},
  author={Jin Wan and Hui Yin and Ai-Xin Chong and Zhi-Hao Liu},
  journal={Applied Intelligence},
  volume={50},
  number={7},
  pages={1620–1632},
  year={2020},
}

Contents

  1. Train
  2. Test
  3. Results
  4. Acknowledgements

Train

Begin to train

  1. Cd to 'src/', run the following scripts to train models. You can use scripts in file 'demo' to train models for our paper.

    # BI, scale 2, 3, 4, 8
    # PRNet in the paper (x2)
    python main.py --model PRNetx2 --scale 2 --save prnet_x2 --n_resblocks 32 --n_feats 256 --res_scale 0.1 --reset
    
    # PRNet in the paper (x3) - from PRNet (x2)
    #python main.py --model PRNetx3 --scale 3 --save prnet_x3 --n_resblocks 32 --n_feats 252 --res_scale 0.1 --reset 
    
    # PRNet in the paper (x4) - from PRNet (x2)
    #python main.py --model PRNetx4 --scale 4 --save prnet_x4 --n_resblocks 32 --n_feats 256 --res_scale 0.1 --reset --pre_train ../experiment/prnet_x2/model/model_best.pt
    
    # PRNet in the paper (x8) - from PRNet (x4)
    #python main.py --model PRNetx8 --scale 8 --save prnet_x8 --n_resblocks 32 --n_feats 256 --res_scale 0.1 --reset --pre_train ../experiment/prnet_x2/model/model_best.pt
    

Test

  1. Clone this repository:

    git clone https://github.com/jinwan1994/PRNet.git
  2. All the models (BIX2/3/4/8) can be downloaded from BaiduYun(5f61), place the models to ./experiment/model/.

  3. Cd to '/src', run the following scripts.

    You can use scripts in file 'demo' to produce results for our paper.

    # Standard benchmarks (Ex. PRNetx2)
    #python main.py --model PRNetx2 --data_test Set5+Set14+B100+Urban100+Manga109 --scale 2  --n_feats 256 --n_resblocks 32 --res_scale 0.1  --pre_train ../experiment/prnet_x2/model/model_best.pt --test_only # --self_ensemble --save_results --save_gt
    
    # Standard benchmarks (Ex. PRNet_x3)
    #python main.py --model PRNetx3 --data_test Set5+Set14+B100+Urban100+Manga109 --scale 3  --n_feats 252 --n_resblocks 32 --res_scale 0.1  --pre_train ../experiment/prnet_x3/model/model_best.pt --test_only # --self_ensemble --save_results --save_gt
    
    # Standard benchmarks (Ex. PRNet_x4)
    #python main.py --model PRNetx4 --data_test Set5+Set14+B100+Urban100+Manga109 --scale 4  --n_feats 256 --n_resblocks 32 --res_scale 0.1  --pre_train ../experiment/prnet_x4/model/model_best.pt --test_only # --self_ensemble --save_results --save_gt
    
    # Standard benchmarks (Ex. PRNet_x8)
    #python main.py --model PRNetx8 --data_test Set5_x8+Set14_x8+B100_x8+Urban100_x8+Manga109_x8 --scale 8 --res_scale 0.1 --n_feats 256 --n_resblocks 32 --pre_train ../experiment/prnet_x8/model/model_latest_282.pt --test_only # --save_results --save_gt --self_ensemble
  4. Finally, SR results and PSNR/SSIM values for test data are saved to ./experiment/model/*. (PSNR/SSIM values in our paper are obtained using matlab)

Results

Quantitative Results

benchmark

Benchmark SISR results. Average PSNR/SSIM for scale factor x2, x3 and x4 on datasets Set5,Set14, Manga109, BSD100 and Urban100.

Visual Results

visual

Visual comparison for x8 SR on Manga109 and Urban100. dataset.

Acknowledgements

  • This code is built on EDSR (PyTorch). We thank the authors for sharing their codes.

About

Official PyTorch implementation of the paper: “Progressive Residual Networks for Image Super-Resolution”.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.3%
  • Shell 1.7%