Skip to content

Commit

Permalink
Clean up RTD Website aws#2 (aws#3318)
Browse files Browse the repository at this point in the history
Ignoring CI as the changes are all comestic and we need to meet a deadline

* edit advanced_functionality/multi_model_sklearn_home_value/sklearn_multi_model_endpoint_home_value.ipynb

* edit sagemaker_processing/scikit_learn_data_processing_and_model_evaluation/scikit_learn_data_processing_and_model_evaluation.ipynb

* edit sagemaker-python-sdk/managed_spot_training_tensorflow_estimator/managed_spot_training_tensorflow_estimator.ipynb

* edit sagemaker-python-sdk/managed_spot_training_mxnet/managed_spot_training_mxnet.ipynb

* edit sagemaker_batch_transform/tensorflow_cifar-10_with_inference_script/tensorflow-serving-cifar10-python-sdk.ipynb

* edit sagemaker-python-sdk/dgl_gcn/mxnet_gcn.ipynb

* edit sagemaker-python-sdk/dgl_gcn/pytorch_gcn.ipynb

* edit sagemaker-python-sdk/scikit_learn_randomforest/Sklearn_on_SageMaker_end2end.ipynb

* edit scikit_learn_model_registry_batch_transform.ipynb

* edit sagemaker-python-sdk/tensorflow_moving_from_framework_mode_to_script_mode/tensorflow_moving_from_framework_mode_to_script_mode.ipynb

* edit sagemaker-python-sdk/tensorflow_script_mode_pipe_mode/tensorflow_script_mode_pipe_mode.ipynb

* edit sagemaker-python-sdk/tensorflow_script_mode_quickstart/tensorflow_script_mode_quickstart.ipynb

* edit sagemaker-python-sdk/tensorflow_script_mode_using_shell_commands/tensorflow_script_mode_using_shell_commands.ipynb

* edit sagemaker-python-sdk/tensorflow-eager-script-mode/tf-eager-sm-scriptmode.ipynb

* edit sagemaker-python-sdk/tensorflow_script_mode_training_and_serving/tensorflow_script_mode_training_and_serving.ipynb

* edit sagemaker-python-sdk/tensorboard_keras/tensorboard_keras.ipynb

* edit reinforcement_learning/rl_cartpole_ray/rl_cartpole_ray_gymEnv.ipynb

* edit reinforcement_learning/rl_roboschool_ray/rl_roboschool_ray.ipynb

* edit reinforcement_learning/rl_cartpole_coach/rl_cartpole_coach_gymEnv.ipynb

* edit reinforcement_learning/rl_managed_spot_cartpole_coach/rl_managed_spot_cartpole_coach_gymEnv.ipynb

* edit reinforcement_learning/rl_roboschool_ray/rl_roboschool_ray_automatic_model_tuning.ipynb

* edit reinforcement_learning/rl_hvac_coach_energyplus/rl_hvac_coach_energyplus.ipynb

* edit reinforcement_learning/rl_unity_ray/rl_unity_ray.ipynb

* edit reinforcement_learning/rl_game_server_autopilot/sagemaker/rl_gamerserver_ray.ipynb

* edit reinforcement_learning/rl_network_compression_ray_custom/rl_network_compression_ray_custom.ipynb

* edit reinforcement_learning/rl_traveling_salesman_vehicle_routing_coach/rl_traveling_salesman_vehicle_routing_coach.ipynb

* edit hyperparameter_tuning/xgboost_direct_marketing/hpo_xgboost_direct_marketing_sagemaker_APIs.ipynb

* edit hyperparameter_tuning/xgboost_direct_marketing/hpo_xgboost_direct_marketing_sagemaker_python_sdk.ipynb

* edit hyperparameter_tuning/xgboost_random_log/hpo_xgboost_random_log.ipynb

* edit training/distributed_training/tensorflow/data_parallel/maskrcnn/tensorflow2_smdataparallel_maskrcnn_demo.ipynb

* edit training/distributed_training/tensorflow/data_parallel/mnist/tensorflow2_smdataparallel_mnist_demo.ipynb

* edit sagemaker-python-sdk/mxnet_mnist/mxnet_mnist.ipynb

* edit sagemaker-python-sdk/mxnet_horovod_fasterrcnn/horovod_deployment_notebook.ipynb

* edit sagemaker-python-sdk/mxnet_horovod_maskrcnn/horovod_deployment_notebook.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining-elastic-inference.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-incremental-training-highlevel.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-lst-format-highlevel.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-transfer-learning.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-transfer-learning-highlevel.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining-highlevel.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_caltech/Image-classification-fulltraining-highlevel.ipynb

* edit introduction_to_amazon_algorithms/imageclassification_mscoco_multi_label/Image-classification-multilabel-lst.ipynb

* edit introduction_to_amazon_algorithms/object_detection_birds/object_detection_birds.ipynb

* edit introduction_to_amazon_algorithms/blazingtext_text_classification_dbpedia/blazingtext_text_classification_dbpedia.ipynb

* edit introduction_to_amazon_algorithms/blazingtext_word2vec_subwords_text8/blazingtext_word2vec_subwords_text8.ipynb

* edit introduction_to_amazon_algorithms/blazingtext_word2vec_subwords_text8/blazingtext_word2vec_subwords_text8.ipynb

* edit introduction_to_amazon_algorithms/blazingtext_word2vec_text8/blazingtext_word2vec_text8.ipynb

* edit introduction_to_amazon_algorithms/lda_topic_modeling/LDA-Introduction.ipynb

* edit scientific_details_of_algorithms/ntm_topic_modeling/ntm_wikitext.ipynb

* edit introduction_to_amazon_algorithms/ntm_synthetic/ntm_synthetic.ipynb

* edit introduction_to_applying_machine_learning/ntm_20newsgroups_topic_modeling/ntm_20newsgroups_topic_model.ipynb

* edit introduction_to_amazon_algorithms/seq2seq_translation_en-de/SageMaker-Seq2Seq-Translation-English-German.ipynb

* edit introduction_to_amazon_algorithms/deepar_electricity/DeepAR-Electricity.ipynb

* edit introduction_to_amazon_algorithms/k_nearest_neighbors_covtype/k_nearest_neighbors_covtype.ipynb

* edit introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone.ipynb

* edit introduction_to_amazon_algorithms/xgboost_abalone/xgboost_abalone_dist_script_mode.ipynb

* edit sagemaker-python-sdk/1P_kmeans_highlevel/kmeans_mnist.ipynb

* edit sagemaker-python-sdk/1P_kmeans_lowlevel/kmeans_mnist_lowlevel.ipynb

* edit introduction_to_amazon_algorithms/random_cut_forest/random_cut_forest.ipynb

* edit introduction_to_amazon_algorithms/object2vec_sentence_similarity/object2vec_sentence_similarity.ipynb

* edit introduction_to_amazon_algorithms/object2vec_movie_recommendation/object2vec_movie_recommendation.ipynb

* edit sagemaker_neo_compilation_jobs/tensorflow_distributed_mnist/tensorflow_distributed_mnist_neo.ipynb

* edit advanced_functionality/multi_model_xgboost_home_value/xgboost_multi_model_endpoint_home_value.ipynb

* edit sagemaker_model_monitor/tensorflow/SageMaker-Model-Monitor-tensorflow.ipynb

* edit sagemaker_model_monitor/fairness_and_explainability/SageMaker-Model-Monitor-Fairness-and-Explainability.ipynb

* edit scientific_details_of_algorithms/lda_topic_modeling/LDA-Science.ipynb

* edit sagemaker-debugger/tensorflow_profiling/tf-resnet-profiling-multi-gpu-multi-node-boto3.ipynb

* edit sagemaker-debugger/tensorflow_profiling/tf-resnet-profiling-multi-gpu-multi-node.ipynb

* edit aws_marketplace/using_model_packages/auto_insurance/automating_auto_insurance_claim_processing.ipynb

* add links to inference/data_types/.html

* edit data_types/hteml
  • Loading branch information
atqy authored Apr 12, 2022
1 parent 5d0a376 commit 8279abf
Show file tree
Hide file tree
Showing 69 changed files with 247 additions and 245 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -274,7 +274,7 @@
"tags": []
},
"source": [
"# Train multiple house value prediction models\n",
"## Train multiple house value prediction models\n",
"\n",
"In the follow section, we are setting up the code to train a house price prediction model for each of 4 different cities.\n",
"\n",
Expand Down Expand Up @@ -897,7 +897,7 @@
"tags": []
},
"source": [
"# Create the multi-model endpoint with the SageMaker SDK"
"## Create the multi-model endpoint with the SageMaker SDK"
]
},
{
Expand Down Expand Up @@ -1064,7 +1064,7 @@
"tags": []
},
"source": [
"# Deploy the Multi Model Endpoint\n",
"## Deploy the Multi Model Endpoint\n",
"\n",
"You need to consider the appropriate instance type and number of instances for the projected prediction workload across all the models you plan to host behind your multi-model endpoint. The number and size of the individual models will also drive memory requirements."
]
Expand Down Expand Up @@ -1261,7 +1261,7 @@
"tags": []
},
"source": [
"# Get predictions from the endpoint\n",
"## Get predictions from the endpoint\n",
"\n",
"Recall that ```mme.deploy()``` returns a [RealTimePredictor](https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/predictor.py#L35) that we saved in a variable called ```predictor```.\n",
"\n",
Expand Down Expand Up @@ -1610,4 +1610,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@
"tags": []
},
"source": [
"# Generate synthetic data\n",
"## Generate synthetic data\n",
"\n",
"The code below contains helper functions to generate synthetic data in the form of a `1x7` numpy array representing the features of a house.\n",
"\n",
Expand Down Expand Up @@ -303,7 +303,7 @@
"tags": []
},
"source": [
"# Train multiple house value prediction models\n",
"## Train multiple house value prediction models\n",
"\n",
"In the follow section, we are setting up the code to train a house price prediction model for each of 4 different cities.\n",
"\n",
Expand Down Expand Up @@ -749,7 +749,7 @@
"tags": []
},
"source": [
"# Create the multi-model endpoint with the SageMaker SDK"
"## Create the multi-model endpoint with the SageMaker SDK"
]
},
{
Expand Down Expand Up @@ -913,7 +913,7 @@
"tags": []
},
"source": [
"# Deploy the Multi Model Endpoint\n",
"## Deploy the Multi Model Endpoint\n",
"\n",
"You need to consider the appropriate instance type and number of instances for the projected prediction workload across all the models you plan to host behind your multi-model endpoint. The number and size of the individual models will also drive memory requirements."
]
Expand Down Expand Up @@ -1143,7 +1143,7 @@
"tags": []
},
"source": [
"# Get predictions from the endpoint\n",
"## Get predictions from the endpoint\n",
"\n",
"Recall that ```mme.deploy()``` returns a [RealTimePredictor](https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/predictor.py#L35) that we saved in a variable called ```predictor```.\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -392,7 +392,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5: Cleanup "
"## Step 5: Cleanup "
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Direct Marketing with Amazon SageMaker XGBoost and Hyperparameter Tuning\n",
"# Direct Marketing with Amazon SageMaker XGBoost and Hyperparameter Tuning (SageMaker API)\n",
"_**Supervised Learning with Gradient Boosted Trees: A Binary Prediction Problem With Unbalanced Classes**_\n",
"\n",
"---\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Direct Marketing with Amazon SageMaker XGBoost and Hyperparameter Tuning\n",
"# Direct Marketing with Amazon SageMaker XGBoost and Hyperparameter Tuning (SageMaker SDK)\n",
"_**Supervised Learning with Gradient Boosted Trees: A Binary Prediction Problem With Unbalanced Classes**_\n",
"\n",
"---\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -311,7 +311,7 @@
"tags": []
},
"source": [
"# Logarithmic scaling\n",
"## Logarithmic scaling\n",
"\n",
"In both cases we use logarithmic scaling, which is the scaling type that should be used whenever the order of magnitude is more important that the absolute value. It should be used if a change, say, from 1 to 2 is expected to have a much bigger impact than a change from 100 to 101, due to the fact that the hyperparameter doubles in the first case but not in the latter."
]
Expand Down Expand Up @@ -350,7 +350,7 @@
"tags": []
},
"source": [
"# Random search\n",
"## Random search\n",
"\n",
"We now start a tuning job using random search. The main advantage of using random search is that this allows us to train jobs with a high level of parallelism"
]
Expand Down Expand Up @@ -435,7 +435,7 @@
"tags": []
},
"source": [
"# Linear scaling\n",
"## Linear scaling\n",
"\n",
"Let us compare the results with executing a job using linear scaling."
]
Expand Down
10 changes: 6 additions & 4 deletions inference/data_types.rst
Original file line number Diff line number Diff line change
Expand Up @@ -3,20 +3,21 @@ Data Types

Image
-----
Coming soon...

.. toctree::
:maxdepth: 1


../sagemaker-python-sdk/pytorch_mnist/pytorch_mnist.ipynb
../sagemaker-python-sdk/tensorflow_serving_container/tensorflow_serving_container.ipynb

Tabular
-------
Coming soon...

.. toctree::
:maxdepth: 1

../sagemaker-python-sdk/scikit_learn_iris/scikit_learn_estimator_example_with_batch_transform.ipynb


Text
----
Expand All @@ -29,7 +30,8 @@ Text

Time series
-----------
Coming soon...

.. toctree::
:maxdepth: 1

../introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"# Text Classification using SageMaker BlazingText\n",
"\n",
"Text Classification can be used to solve various use-cases like sentiment analysis, spam detection, hashtag prediction etc. This notebook demonstrates the use of SageMaker BlazingText to perform supervised binary/multi class with single or multi label text classification. BlazingText can train the model on more than a billion words in a couple of minutes using a multi-core CPU or a GPU, while achieving performance on par with the state-of-the-art deep learning text classification algorithms. BlazingText extends the fastText text classifier to leverage GPU acceleration using custom CUDA kernels."
]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"# Learning Word2Vec Subword Representations using BlazingText\n",
"\n",
"Word2Vec is a popular algorithm used for generating dense vector representations of words in large corpora using unsupervised learning. These representations are useful for many natural language processing (NLP) tasks like sentiment analysis, named entity recognition and machine translation. \n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Introduction\n",
"# Learning Word2Vec Word Representations using BlazingText\n",
"\n",
"Word2Vec is a popular algorithm used for generating dense vector representations of words in large corpora using unsupervised learning. The resulting vectors have been shown to capture semantic relationships between the corresponding words and are used extensively for many downstream natural language processing (NLP) tasks like sentiment analysis, named entity recognition and machine translation. "
]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -819,7 +819,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Additional features\n",
"## Additional features\n",
"\n",
"We have seen how to prepare a dataset and run DeepAR for a simple example.\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training\n",
"## Training\n",
"Run the training using Amazon SageMaker CreateTrainingJob API"
]
},
Expand Down Expand Up @@ -319,7 +319,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy The Model\n",
"## Deploy The Model\n",
"\n",
"***\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# End-to-End Multiclass Image Classification Example\n",
"# End-to-End Multiclass Image Classification Example with SageMaker SDK and SageMaker Neo\n",
"1. [Introduction](#Introduction)\n",
"2. [Prerequisites and Preprocessing](#Prequisites-and-Preprocessing)\n",
" 1. [Permissions and environment variables](#Permissions-and-environment-variables)\n",
Expand Down Expand Up @@ -257,7 +257,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Compile\n",
"## Compile\n",
"\n",
"***\n",
"\n",
Expand Down Expand Up @@ -312,7 +312,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inference\n",
"## Inference\n",
"\n",
"***\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training\n",
"## Training\n",
"Run the training using Amazon sagemaker CreateTrainingJob API"
]
},
Expand Down Expand Up @@ -312,7 +312,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy The Model\n",
"## Deploy The Model\n",
"\n",
"***\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -336,7 +336,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inference\n",
"## Inference\n",
"\n",
"***\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -367,7 +367,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inference\n",
"## Inference\n",
"\n",
"***\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image classification transfer learning demo\n",
"# Image classification transfer learning demo (SageMaker SDK)\n",
"\n",
"1. [Introduction](#Introduction)\n",
"2. [Prerequisites and Preprocessing](#Prequisites-and-Preprocessing)\n",
Expand Down Expand Up @@ -253,7 +253,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inference\n",
"## Inference\n",
"\n",
"***\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Training\n",
"## Training\n",
"Run the training using Amazon sagemaker CreateTrainingJob API"
]
},
Expand Down Expand Up @@ -323,7 +323,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Deploy The Model\n",
"## Deploy The Model\n",
"\n",
"***\n",
"\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -413,7 +413,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"# Inference\n",
"## Inference\n",
"\n",
"***\n",
"\n",
Expand Down
Loading

0 comments on commit 8279abf

Please sign in to comment.