Skip to content

digitalbrain79/resnet-ensemble

Repository files navigation

Resnet Ensemble

tensorflow/models/slim 에서 evaluation 하는데 필요한 파일만 수정해서 올렸습니다. Ensemble은 각 model에서 나온 output을 평균한 후 softmax에 넣는 방법으로 했습니다.

Dataset

Food validation data

Checkpoints Files

Resnet 50 checkpoints files

Evaluation

DATASET_DIR=data
CHECKPOINT_DIR=checkpoints/resnet_50_1_100000.ckpt,checkpoints/resnet_50_2_100000.ckpt,checkpoints/resnet_50_3_100000.ckpt
python eval_image_classifier_ensemble.py \
	--alsologtostderr \
	--checkpoint_path=${CHECKPOINT_DIR} \
	--dataset_dir=${DATASET_DIR} \
	--dataset_name=food \
	--dataset_split_name=validation \
	--model_name=resnet_v2_50

Result

Model Top 1 Accuracy Top 5 Accuracy
Resnet_50_1 0.676 0.885
Resnet_50_2 0.674 0.877
Resnet_50_3 0.675 0.880
Ensemble 0.738 0.914
위의 결과와 같이 ensemble을 하니 top 1 accuracy가 0.6정도 증가하고 top 5 accuracy가 0.3정도 증가했습니다.

About

Ensemble code for Resnet in Tensorflow slim

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published