Skip to content

Commit

Permalink
added top_k arguement in the run function of ElasticSearcBM25Retriever
Browse files Browse the repository at this point in the history
  • Loading branch information
sahusiddharth committed Dec 20, 2023
1 parent 65beef5 commit 82d2af3
Show file tree
Hide file tree
Showing 2 changed files with 5 additions and 4 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -48,12 +48,12 @@ def from_dict(cls, data: Dict[str, Any]) -> "ElasticsearchBM25Retriever":
return default_from_dict(cls, data)

@component.output_types(documents=List[Document])
def run(self, query: str):
def run(self, query: str, top_k: int=None):
docs = self._document_store._bm25_retrieval(
query=query,
filters=self._filters,
fuzziness=self._fuzziness,
top_k=self._top_k,
top_k=self._top_k if top_k == None else top_k,
scale_score=self._scale_score,
)
return {"documents": docs}
Original file line number Diff line number Diff line change
Expand Up @@ -64,17 +64,18 @@ def from_dict(cls, data: Dict[str, Any]) -> "ElasticsearchEmbeddingRetriever":
return default_from_dict(cls, data)

@component.output_types(documents=List[Document])
def run(self, query_embedding: List[float]):
def run(self, query_embedding: List[float], top_k:int = None):
"""
Retrieve documents using a vector similarity metric.
:param query_embedding: Embedding of the query.
:param top_k: Maximum number of Documents to return
:return: List of Document similar to `query_embedding`.
"""
docs = self._document_store._embedding_retrieval(
query_embedding=query_embedding,
filters=self._filters,
top_k=self._top_k,
top_k=self._top_k if top_k == None else top_k,
num_candidates=self._num_candidates,
)
return {"documents": docs}

0 comments on commit 82d2af3

Please sign in to comment.