-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Elasticsearch Embedding Retriever (#54)
* set scale_score default to False * unrelated: replace text w content * first implementation * test * fix some tests * make tests more robust; skip unsupported ones * rm unsupported test * ignore import-not-found * embedding retriever * tests * organize imports * first chunk addressing PR feedback * improve tests * add docstrings * more docstrings
- Loading branch information
Showing
2 changed files
with
159 additions
and
0 deletions.
There are no files selected for viewing
80 changes: 80 additions & 0 deletions
80
document_stores/elasticsearch/src/elasticsearch_haystack/embedding_retriever.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
# SPDX-FileCopyrightText: 2023-present deepset GmbH <[email protected]> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
from typing import Any, Dict, List, Optional | ||
|
||
from haystack.preview import component, default_from_dict, default_to_dict | ||
from haystack.preview.dataclasses import Document | ||
|
||
from elasticsearch_haystack.document_store import ElasticsearchDocumentStore | ||
|
||
|
||
@component | ||
class ElasticsearchEmbeddingRetriever: | ||
""" | ||
Uses a vector similarity metric to retrieve documents from the ElasticsearchDocumentStore. | ||
Needs to be connected to the ElasticsearchDocumentStore to run. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
*, | ||
document_store: ElasticsearchDocumentStore, | ||
filters: Optional[Dict[str, Any]] = None, | ||
top_k: int = 10, | ||
num_candidates: Optional[int] = None, | ||
): | ||
""" | ||
Create the ElasticsearchEmbeddingRetriever component. | ||
:param document_store: An instance of ElasticsearchDocumentStore. | ||
:param filters: Filters applied to the retrieved Documents. Defaults to None. | ||
Filters are applied during the approximate kNN search to ensure that top_k matching documents are returned. | ||
:param top_k: Maximum number of Documents to return, defaults to 10 | ||
:param num_candidates: Number of approximate nearest neighbor candidates on each shard. Defaults to top_k * 10. | ||
Increasing this value will improve search accuracy at the cost of slower search speeds. | ||
You can read more about it in the Elasticsearch documentation: | ||
https://www.elastic.co/guide/en/elasticsearch/reference/current/knn-search.html#tune-approximate-knn-for-speed-accuracy | ||
:raises ValueError: If `document_store` is not an instance of ElasticsearchDocumentStore. | ||
""" | ||
if not isinstance(document_store, ElasticsearchDocumentStore): | ||
msg = "document_store must be an instance of ElasticsearchDocumentStore" | ||
raise ValueError(msg) | ||
|
||
self._document_store = document_store | ||
self._filters = filters or {} | ||
self._top_k = top_k | ||
self._num_candidates = num_candidates | ||
|
||
def to_dict(self) -> Dict[str, Any]: | ||
return default_to_dict( | ||
self, | ||
filters=self._filters, | ||
top_k=self._top_k, | ||
num_candidates=self._num_candidates, | ||
document_store=self._document_store.to_dict(), | ||
) | ||
|
||
@classmethod | ||
def from_dict(cls, data: Dict[str, Any]) -> "ElasticsearchEmbeddingRetriever": | ||
data["init_parameters"]["document_store"] = ElasticsearchDocumentStore.from_dict( | ||
data["init_parameters"]["document_store"] | ||
) | ||
return default_from_dict(cls, data) | ||
|
||
@component.output_types(documents=List[Document]) | ||
def run(self, query_embedding: List[float]): | ||
""" | ||
Retrieve documents using a vector similarity metric. | ||
:param query_embedding: Embedding of the query. | ||
:return: List of Document similar to `query_embedding`. | ||
""" | ||
docs = self._document_store._embedding_retrieval( | ||
query_embedding=query_embedding, | ||
filters=self._filters, | ||
top_k=self._top_k, | ||
num_candidates=self._num_candidates, | ||
) | ||
return {"documents": docs} |
79 changes: 79 additions & 0 deletions
79
document_stores/elasticsearch/tests/test_embedding_retriever.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# SPDX-FileCopyrightText: 2023-present deepset GmbH <[email protected]> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
from unittest.mock import Mock, patch | ||
|
||
from haystack.preview.dataclasses import Document | ||
|
||
from elasticsearch_haystack.document_store import ElasticsearchDocumentStore | ||
from elasticsearch_haystack.embedding_retriever import ElasticsearchEmbeddingRetriever | ||
|
||
|
||
def test_init_default(): | ||
mock_store = Mock(spec=ElasticsearchDocumentStore) | ||
retriever = ElasticsearchEmbeddingRetriever(document_store=mock_store) | ||
assert retriever._document_store == mock_store | ||
assert retriever._filters == {} | ||
assert retriever._top_k == 10 | ||
assert retriever._num_candidates is None | ||
|
||
|
||
@patch("elasticsearch_haystack.document_store.Elasticsearch") | ||
def test_to_dict(_mock_elasticsearch_client): | ||
document_store = ElasticsearchDocumentStore(hosts="some fake host") | ||
retriever = ElasticsearchEmbeddingRetriever(document_store=document_store) | ||
res = retriever.to_dict() | ||
assert res == { | ||
"type": "ElasticsearchEmbeddingRetriever", | ||
"init_parameters": { | ||
"document_store": { | ||
"init_parameters": { | ||
"hosts": "some fake host", | ||
"index": "default", | ||
"embedding_similarity_function": "cosine", | ||
}, | ||
"type": "ElasticsearchDocumentStore", | ||
}, | ||
"filters": {}, | ||
"top_k": 10, | ||
"num_candidates": None, | ||
}, | ||
} | ||
|
||
|
||
@patch("elasticsearch_haystack.document_store.Elasticsearch") | ||
def test_from_dict(_mock_elasticsearch_client): | ||
data = { | ||
"type": "ElasticsearchEmbeddingRetriever", | ||
"init_parameters": { | ||
"document_store": { | ||
"init_parameters": {"hosts": "some fake host", "index": "default"}, | ||
"type": "ElasticsearchDocumentStore", | ||
}, | ||
"filters": {}, | ||
"top_k": 10, | ||
"num_candidates": None, | ||
}, | ||
} | ||
retriever = ElasticsearchEmbeddingRetriever.from_dict(data) | ||
assert retriever._document_store | ||
assert retriever._filters == {} | ||
assert retriever._top_k == 10 | ||
assert retriever._num_candidates is None | ||
|
||
|
||
def test_run(): | ||
mock_store = Mock(spec=ElasticsearchDocumentStore) | ||
mock_store._embedding_retrieval.return_value = [Document(content="Test doc", embedding=[0.1, 0.2])] | ||
retriever = ElasticsearchEmbeddingRetriever(document_store=mock_store) | ||
res = retriever.run(query_embedding=[0.5, 0.7]) | ||
mock_store._embedding_retrieval.assert_called_once_with( | ||
query_embedding=[0.5, 0.7], | ||
filters={}, | ||
top_k=10, | ||
num_candidates=None, | ||
) | ||
assert len(res) == 1 | ||
assert len(res["documents"]) == 1 | ||
assert res["documents"][0].content == "Test doc" | ||
assert res["documents"][0].embedding == [0.1, 0.2] |