Skip to content

Commit

Permalink
Merge branch 'main' into fix/bug-1174-langfuse-parent-span
Browse files Browse the repository at this point in the history
  • Loading branch information
alex-stoica authored Nov 16, 2024
2 parents 75325c5 + 67e08d0 commit 53a8f89
Show file tree
Hide file tree
Showing 10 changed files with 412 additions and 50 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
#
# SPDX-License-Identifier: Apache-2.0
from .chat.chat_generator import AnthropicChatGenerator
from .chat.vertex_chat_generator import AnthropicVertexChatGenerator
from .generator import AnthropicGenerator

__all__ = ["AnthropicGenerator", "AnthropicChatGenerator"]
__all__ = ["AnthropicGenerator", "AnthropicChatGenerator", "AnthropicVertexChatGenerator"]
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
import os
from typing import Any, Callable, Dict, Optional

from haystack import component, default_from_dict, default_to_dict, logging
from haystack.dataclasses import StreamingChunk
from haystack.utils import deserialize_callable, serialize_callable

from anthropic import AnthropicVertex

from .chat_generator import AnthropicChatGenerator

logger = logging.getLogger(__name__)


@component
class AnthropicVertexChatGenerator(AnthropicChatGenerator):
"""
Enables text generation using state-of-the-art Claude 3 LLMs via the Anthropic Vertex AI API.
It supports models such as `Claude 3.5 Sonnet`, `Claude 3 Opus`, `Claude 3 Sonnet`, and `Claude 3 Haiku`,
accessible through the Vertex AI API endpoint.
To use AnthropicVertexChatGenerator, you must have a GCP project with Vertex AI enabled.
Additionally, ensure that the desired Anthropic model is activated in the Vertex AI Model Garden.
Before making requests, you may need to authenticate with GCP using `gcloud auth login`.
For more details, refer to the [guide] (https://docs.anthropic.com/en/api/claude-on-vertex-ai).
Any valid text generation parameters for the Anthropic messaging API can be passed to
the AnthropicVertex API. Users can provide these parameters directly to the component via
the `generation_kwargs` parameter in `__init__` or the `run` method.
For more details on the parameters supported by the Anthropic API, refer to the
Anthropic Message API [documentation](https://docs.anthropic.com/en/api/messages).
```python
from haystack_integrations.components.generators.anthropic import AnthropicVertexChatGenerator
from haystack.dataclasses import ChatMessage
messages = [ChatMessage.from_user("What's Natural Language Processing?")]
client = AnthropicVertexChatGenerator(
model="claude-3-sonnet@20240229",
project_id="your-project-id", region="your-region"
)
response = client.run(messages)
print(response)
>> {'replies': [ChatMessage(content='Natural Language Processing (NLP) is a field of artificial intelligence that
>> focuses on enabling computers to understand, interpret, and generate human language. It involves developing
>> techniques and algorithms to analyze and process text or speech data, allowing machines to comprehend and
>> communicate in natural languages like English, Spanish, or Chinese.', role=<ChatRole.ASSISTANT: 'assistant'>,
>> name=None, meta={'model': 'claude-3-sonnet@20240229', 'index': 0, 'finish_reason': 'end_turn',
>> 'usage': {'input_tokens': 15, 'output_tokens': 64}})]}
```
For more details on supported models and their capabilities, refer to the Anthropic
[documentation](https://docs.anthropic.com/claude/docs/intro-to-claude).
"""

def __init__(
self,
region: str,
project_id: str,
model: str = "claude-3-5-sonnet@20240620",
streaming_callback: Optional[Callable[[StreamingChunk], None]] = None,
generation_kwargs: Optional[Dict[str, Any]] = None,
ignore_tools_thinking_messages: bool = True,
):
"""
Creates an instance of AnthropicVertexChatGenerator.
:param region: The region where the Anthropic model is deployed. Defaults to "us-central1".
:param project_id: The GCP project ID where the Anthropic model is deployed.
:param model: The name of the model to use.
:param streaming_callback: A callback function that is called when a new token is received from the stream.
The callback function accepts StreamingChunk as an argument.
:param generation_kwargs: Other parameters to use for the model. These parameters are all sent directly to
the AnthropicVertex endpoint. See Anthropic [documentation](https://docs.anthropic.com/claude/reference/messages_post)
for more details.
Supported generation_kwargs parameters are:
- `system`: The system message to be passed to the model.
- `max_tokens`: The maximum number of tokens to generate.
- `metadata`: A dictionary of metadata to be passed to the model.
- `stop_sequences`: A list of strings that the model should stop generating at.
- `temperature`: The temperature to use for sampling.
- `top_p`: The top_p value to use for nucleus sampling.
- `top_k`: The top_k value to use for top-k sampling.
- `extra_headers`: A dictionary of extra headers to be passed to the model (i.e. for beta features).
:param ignore_tools_thinking_messages: Anthropic's approach to tools (function calling) resolution involves a
"chain of thought" messages before returning the actual function names and parameters in a message. If
`ignore_tools_thinking_messages` is `True`, the generator will drop so-called thinking messages when tool
use is detected. See the Anthropic [tools](https://docs.anthropic.com/en/docs/tool-use#chain-of-thought-tool-use)
for more details.
"""
self.region = region or os.environ.get("REGION")
self.project_id = project_id or os.environ.get("PROJECT_ID")
self.model = model
self.generation_kwargs = generation_kwargs or {}
self.streaming_callback = streaming_callback
self.client = AnthropicVertex(region=self.region, project_id=self.project_id)
self.ignore_tools_thinking_messages = ignore_tools_thinking_messages

def to_dict(self) -> Dict[str, Any]:
"""
Serialize this component to a dictionary.
:returns:
The serialized component as a dictionary.
"""
callback_name = serialize_callable(self.streaming_callback) if self.streaming_callback else None
return default_to_dict(
self,
region=self.region,
project_id=self.project_id,
model=self.model,
streaming_callback=callback_name,
generation_kwargs=self.generation_kwargs,
ignore_tools_thinking_messages=self.ignore_tools_thinking_messages,
)

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "AnthropicVertexChatGenerator":
"""
Deserialize this component from a dictionary.
:param data: The dictionary representation of this component.
:returns:
The deserialized component instance.
"""
init_params = data.get("init_parameters", {})
serialized_callback_handler = init_params.get("streaming_callback")
if serialized_callback_handler:
data["init_parameters"]["streaming_callback"] = deserialize_callable(serialized_callback_handler)
return default_from_dict(cls, data)
197 changes: 197 additions & 0 deletions integrations/anthropic/tests/test_vertex_chat_generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
import os

import anthropic
import pytest
from haystack.components.generators.utils import print_streaming_chunk
from haystack.dataclasses import ChatMessage, ChatRole

from haystack_integrations.components.generators.anthropic import AnthropicVertexChatGenerator


@pytest.fixture
def chat_messages():
return [
ChatMessage.from_system("\\nYou are a helpful assistant, be super brief in your responses."),
ChatMessage.from_user("What's the capital of France?"),
]


class TestAnthropicVertexChatGenerator:
def test_init_default(self):
component = AnthropicVertexChatGenerator(region="us-central1", project_id="test-project-id")
assert component.region == "us-central1"
assert component.project_id == "test-project-id"
assert component.model == "claude-3-5-sonnet@20240620"
assert component.streaming_callback is None
assert not component.generation_kwargs
assert component.ignore_tools_thinking_messages

def test_init_with_parameters(self):
component = AnthropicVertexChatGenerator(
region="us-central1",
project_id="test-project-id",
model="claude-3-5-sonnet@20240620",
streaming_callback=print_streaming_chunk,
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
ignore_tools_thinking_messages=False,
)
assert component.region == "us-central1"
assert component.project_id == "test-project-id"
assert component.model == "claude-3-5-sonnet@20240620"
assert component.streaming_callback is print_streaming_chunk
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}
assert component.ignore_tools_thinking_messages is False

def test_to_dict_default(self):
component = AnthropicVertexChatGenerator(region="us-central1", project_id="test-project-id")
data = component.to_dict()
assert data == {
"type": (
"haystack_integrations.components.generators."
"anthropic.chat.vertex_chat_generator.AnthropicVertexChatGenerator"
),
"init_parameters": {
"region": "us-central1",
"project_id": "test-project-id",
"model": "claude-3-5-sonnet@20240620",
"streaming_callback": None,
"generation_kwargs": {},
"ignore_tools_thinking_messages": True,
},
}

def test_to_dict_with_parameters(self):
component = AnthropicVertexChatGenerator(
region="us-central1",
project_id="test-project-id",
streaming_callback=print_streaming_chunk,
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
"type": (
"haystack_integrations.components.generators."
"anthropic.chat.vertex_chat_generator.AnthropicVertexChatGenerator"
),
"init_parameters": {
"region": "us-central1",
"project_id": "test-project-id",
"model": "claude-3-5-sonnet@20240620",
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"ignore_tools_thinking_messages": True,
},
}

def test_to_dict_with_lambda_streaming_callback(self):
component = AnthropicVertexChatGenerator(
region="us-central1",
project_id="test-project-id",
model="claude-3-5-sonnet@20240620",
streaming_callback=lambda x: x,
generation_kwargs={"max_tokens": 10, "some_test_param": "test-params"},
)
data = component.to_dict()
assert data == {
"type": (
"haystack_integrations.components.generators."
"anthropic.chat.vertex_chat_generator.AnthropicVertexChatGenerator"
),
"init_parameters": {
"region": "us-central1",
"project_id": "test-project-id",
"model": "claude-3-5-sonnet@20240620",
"streaming_callback": "tests.test_vertex_chat_generator.<lambda>",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"ignore_tools_thinking_messages": True,
},
}

def test_from_dict(self):
data = {
"type": (
"haystack_integrations.components.generators."
"anthropic.chat.vertex_chat_generator.AnthropicVertexChatGenerator"
),
"init_parameters": {
"region": "us-central1",
"project_id": "test-project-id",
"model": "claude-3-5-sonnet@20240620",
"streaming_callback": "haystack.components.generators.utils.print_streaming_chunk",
"generation_kwargs": {"max_tokens": 10, "some_test_param": "test-params"},
"ignore_tools_thinking_messages": True,
},
}
component = AnthropicVertexChatGenerator.from_dict(data)
assert component.model == "claude-3-5-sonnet@20240620"
assert component.region == "us-central1"
assert component.project_id == "test-project-id"
assert component.streaming_callback is print_streaming_chunk
assert component.generation_kwargs == {"max_tokens": 10, "some_test_param": "test-params"}

def test_run(self, chat_messages, mock_chat_completion):
component = AnthropicVertexChatGenerator(region="us-central1", project_id="test-project-id")
response = component.run(chat_messages)

# check that the component returns the correct ChatMessage response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]

def test_run_with_params(self, chat_messages, mock_chat_completion):
component = AnthropicVertexChatGenerator(
region="us-central1", project_id="test-project-id", generation_kwargs={"max_tokens": 10, "temperature": 0.5}
)
response = component.run(chat_messages)

# check that the component calls the Anthropic API with the correct parameters
_, kwargs = mock_chat_completion.call_args
assert kwargs["max_tokens"] == 10
assert kwargs["temperature"] == 0.5

# check that the component returns the correct response
assert isinstance(response, dict)
assert "replies" in response
assert isinstance(response["replies"], list)
assert len(response["replies"]) == 1
assert [isinstance(reply, ChatMessage) for reply in response["replies"]]

@pytest.mark.skipif(
not (os.environ.get("REGION", None) or os.environ.get("PROJECT_ID", None)),
reason="Authenticate with GCP and set env variables REGION and PROJECT_ID to run this test.",
)
@pytest.mark.integration
def test_live_run_wrong_model(self, chat_messages):
component = AnthropicVertexChatGenerator(
model="something-obviously-wrong", region=os.environ.get("REGION"), project_id=os.environ.get("PROJECT_ID")
)
with pytest.raises(anthropic.NotFoundError):
component.run(chat_messages)

@pytest.mark.skipif(
not (os.environ.get("REGION", None) or os.environ.get("PROJECT_ID", None)),
reason="Authenticate with GCP and set env variables REGION and PROJECT_ID to run this test.",
)
@pytest.mark.integration
def test_default_inference_params(self, chat_messages):
client = AnthropicVertexChatGenerator(
region=os.environ.get("REGION"), project_id=os.environ.get("PROJECT_ID"), model="claude-3-sonnet@20240229"
)
response = client.run(chat_messages)

assert "replies" in response, "Response does not contain 'replies' key"
replies = response["replies"]
assert isinstance(replies, list), "Replies is not a list"
assert len(replies) > 0, "No replies received"

first_reply = replies[0]
assert isinstance(first_reply, ChatMessage), "First reply is not a ChatMessage instance"
assert first_reply.content, "First reply has no content"
assert ChatMessage.is_from(first_reply, ChatRole.ASSISTANT), "First reply is not from the assistant"
assert "paris" in first_reply.content.lower(), "First reply does not contain 'paris'"
assert first_reply.meta, "First reply has no metadata"

# Anthropic messages API is similar for AnthropicVertex and Anthropic endpoint,
# remaining tests are skipped for AnthropicVertexChatGenerator as they are already tested in AnthropicChatGenerator.
3 changes: 1 addition & 2 deletions integrations/azure_ai_search/example/document_store.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
from haystack import Document
from haystack.document_stores.types import DuplicatePolicy

from haystack_integrations.document_stores.azure_ai_search import AzureAISearchDocumentStore

Expand Down Expand Up @@ -30,7 +29,7 @@
meta={"version": 2.0, "label": "chapter_three"},
),
]
document_store.write_documents(documents, policy=DuplicatePolicy.SKIP)
document_store.write_documents(documents)

filters = {
"operator": "AND",
Expand Down
5 changes: 1 addition & 4 deletions integrations/azure_ai_search/example/embedding_retrieval.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
from haystack import Document, Pipeline
from haystack.components.embedders import SentenceTransformersDocumentEmbedder, SentenceTransformersTextEmbedder
from haystack.components.writers import DocumentWriter
from haystack.document_stores.types import DuplicatePolicy

from haystack_integrations.components.retrievers.azure_ai_search import AzureAISearchEmbeddingRetriever
from haystack_integrations.document_stores.azure_ai_search import AzureAISearchDocumentStore
Expand Down Expand Up @@ -38,9 +37,7 @@
# Indexing Pipeline
indexing_pipeline = Pipeline()
indexing_pipeline.add_component(instance=document_embedder, name="doc_embedder")
indexing_pipeline.add_component(
instance=DocumentWriter(document_store=document_store, policy=DuplicatePolicy.SKIP), name="doc_writer"
)
indexing_pipeline.add_component(instance=DocumentWriter(document_store=document_store), name="doc_writer")
indexing_pipeline.connect("doc_embedder", "doc_writer")

indexing_pipeline.run({"doc_embedder": {"documents": documents}})
Expand Down
Loading

0 comments on commit 53a8f89

Please sign in to comment.