-
Notifications
You must be signed in to change notification settings - Fork 127
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
50 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
import os | ||
|
||
import pytest | ||
from haystack import Document | ||
from haystack.document_stores.types import DuplicatePolicy | ||
|
||
from haystack_integrations.document_stores.astra import AstraDocumentStore | ||
|
||
|
||
@pytest.mark.integration | ||
@pytest.mark.skipif( | ||
os.environ.get("ASTRA_DB_APPLICATION_TOKEN", "") == "", reason="ASTRA_DB_APPLICATION_TOKEN env var not set" | ||
) | ||
@pytest.mark.skipif(os.environ.get("ASTRA_DB_API_ENDPOINT", "") == "", reason="ASTRA_DB_API_ENDPOINT env var not set") | ||
class TestEmbeddingRetrieval: | ||
|
||
@pytest.fixture | ||
def document_store(self) -> AstraDocumentStore: | ||
return AstraDocumentStore( | ||
collection_name="haystack_integration", | ||
duplicates_policy=DuplicatePolicy.OVERWRITE, | ||
embedding_dimension=768, | ||
) | ||
|
||
@pytest.fixture(autouse=True) | ||
def run_before_and_after_tests(self, document_store: AstraDocumentStore): | ||
""" | ||
Cleaning up document store | ||
""" | ||
document_store.delete_documents(delete_all=True) | ||
assert document_store.count_documents() == 0 | ||
|
||
def test_search_with_top_k(self, document_store): | ||
query_embedding = [0.1] * 768 | ||
common_embedding = [0.8] * 768 | ||
|
||
documents = [Document(content=f"This is document number {i}", embedding=common_embedding) for i in range(0, 3)] | ||
|
||
document_store.write_documents(documents) | ||
|
||
top_k = 2 | ||
|
||
result = document_store.search(query_embedding, top_k) | ||
|
||
assert top_k == len(result) | ||
|
||
for document in result: | ||
assert document.score is not None |