Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

merge compute_output_stat #3310

Merged
merged 12 commits into from
Feb 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 0 additions & 8 deletions deepmd/pt/model/task/dipole.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,14 +132,6 @@ def output_def(self) -> FittingOutputDef:
]
)

@property
def data_stat_key(self):
"""
Get the keys for the data statistic of the fitting.
Return a list of statistic names needed, such as "bias_atom_e".
"""
return []

def forward(
self,
descriptor: torch.Tensor,
Expand Down
34 changes: 22 additions & 12 deletions deepmd/pt/model/task/ener.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,11 @@
from deepmd.pt.utils.env import (
DEFAULT_PRECISION,
)
from deepmd.pt.utils.stat import (
compute_output_bias,
from deepmd.pt.utils.utils import (
to_numpy_array,
)
from deepmd.utils.out_stat import (
compute_stats_from_redu,
)
from deepmd.utils.path import (
DPPath,
Expand Down Expand Up @@ -135,16 +138,8 @@
data["atom_ener"] = self.atom_ener
return data

@property
def data_stat_key(self):
"""
Get the keys for the data statistic of the fitting.
Return a list of statistic names needed, such as "bias_atom_e".
"""
return ["bias_atom_e"]

def compute_output_stats(self, merged, stat_file_path: Optional[DPPath] = None):
energy = [item["energy"] for item in merged]
energy = [item[self.var_name] for item in merged]
data_mixed_type = "real_natoms_vec" in merged[0]
if data_mixed_type:
input_natoms = [item["real_natoms_vec"] for item in merged]
Expand All @@ -155,7 +150,22 @@
if stat_file_path is not None and stat_file_path.is_file():
bias_atom_e = stat_file_path.load_numpy()
else:
bias_atom_e = compute_output_bias(energy, input_natoms, rcond=self.rcond)
# shape: (nframes, ndim)
merged_energy = to_numpy_array(torch.cat(energy))
# shape: (nframes, ntypes)
merged_natoms = to_numpy_array(torch.cat(input_natoms)[:, 2:])
if self.atom_ener is not None and len(self.atom_ener) > 0:
assigned_atom_ener = np.array(

Check warning on line 158 in deepmd/pt/model/task/ener.py

View check run for this annotation

Codecov / codecov/patch

deepmd/pt/model/task/ener.py#L158

Added line #L158 was not covered by tests
[ee if ee is not None else np.nan for ee in self.atom_ener]
)
else:
assigned_atom_ener = None
bias_atom_e, _ = compute_stats_from_redu(
merged_energy,
merged_natoms,
assigned_bias=assigned_atom_ener,
rcond=self.rcond,
)
if stat_file_path is not None:
stat_file_path.save_numpy(bias_atom_e)
assert all(x is not None for x in [bias_atom_e])
Expand Down
8 changes: 0 additions & 8 deletions deepmd/pt/model/task/fitting.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,14 +92,6 @@ def share_params(self, base_class, shared_level, resume=False):
else:
raise NotImplementedError

@property
def data_stat_key(self):
"""
Get the keys for the data statistic of the fitting.
Return a list of statistic names needed, such as "bias_atom_e".
"""
raise NotImplementedError("data_stat_key is not implemented!")

def change_energy_bias(
self, config, model, old_type_map, new_type_map, bias_shift="delta", ntest=10
):
Expand Down
8 changes: 0 additions & 8 deletions deepmd/pt/model/task/polarizability.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,14 +160,6 @@ def output_def(self) -> FittingOutputDef:
]
)

@property
def data_stat_key(self):
"""
Get the keys for the data statistic of the fitting.
Return a list of statistic names needed, such as "bias_atom_e".
"""
return []

def forward(
self,
descriptor: torch.Tensor,
Expand Down
2 changes: 1 addition & 1 deletion deepmd/pt/utils/env_mat_stat.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@ def iter(
Parameters
----------
data : List[Dict[str, torch.Tensor]]
The environment matrix.
The data.

Yields
------
Expand Down
21 changes: 0 additions & 21 deletions deepmd/pt/utils/stat.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import logging

import numpy as np
import torch

log = logging.getLogger(__name__)
Expand Down Expand Up @@ -57,23 +56,3 @@ def make_stat_input(datasets, dataloaders, nbatches):
sys_stat[key] = sys_stat_list
lst.append(sys_stat)
return lst


def compute_output_bias(energy, natoms, rcond=None):
"""Update output bias for fitting net.

Args:
- energy: Batched energy with shape [nframes, 1].
- natoms: Batched atom statisics with shape [self.ntypes+2].

Returns
-------
- energy_coef: Average enery per atom for each element.
"""
for i in range(len(energy)):
energy[i] = energy[i].mean(dim=0, keepdim=True)
natoms[i] = natoms[i].double().mean(dim=0, keepdim=True)
sys_ener = torch.cat(energy).cpu()
sys_tynatom = torch.cat(natoms)[:, 2:].cpu()
energy_coef, _, _, _ = np.linalg.lstsq(sys_tynatom, sys_ener, rcond)
return energy_coef
9 changes: 7 additions & 2 deletions deepmd/tf/fit/dos.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,9 @@
from deepmd.tf.utils.network import (
one_layer_rand_seed_shift,
)
from deepmd.utils.out_stat import (
compute_stats_from_redu,
)

log = logging.getLogger(__name__)

Expand Down Expand Up @@ -225,8 +228,10 @@
sys_tynatom = np.reshape(sys_tynatom, [nsys, -1])
sys_tynatom = sys_tynatom[:, 2:]

dos_shift, resd, rank, s_value = np.linalg.lstsq(
sys_tynatom, sys_dos, rcond=rcond
dos_shift, _ = compute_stats_from_redu(

Check warning on line 231 in deepmd/tf/fit/dos.py

View check run for this annotation

Codecov / codecov/patch

deepmd/tf/fit/dos.py#L231

Added line #L231 was not covered by tests
sys_dos,
sys_tynatom,
rcond=rcond,
)

return dos_shift
Expand Down
25 changes: 12 additions & 13 deletions deepmd/tf/fit/ener.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,9 @@
from deepmd.tf.utils.spin import (
Spin,
)
from deepmd.utils.out_stat import (
compute_stats_from_redu,
)
from deepmd.utils.version import (
check_version_compatibility,
)
Expand Down Expand Up @@ -295,21 +298,17 @@ def _compute_output_stats(self, all_stat, rcond=1e-3, mixed_type=False):
# In this situation, we directly use these assigned energies instead of computing stats.
# This will make the loss decrease quickly
assigned_atom_ener = np.array(
[ee for ee in self.atom_ener_v if ee is not None]
[ee if ee is not None else np.nan for ee in self.atom_ener_v]
)
assigned_ener_idx = [
ii for ii, ee in enumerate(self.atom_ener_v) if ee is not None
]
# np.dot out size: nframe
sys_ener -= np.dot(sys_tynatom[:, assigned_ener_idx], assigned_atom_ener)
sys_tynatom[:, assigned_ener_idx] = 0.0
energy_shift, resd, rank, s_value = np.linalg.lstsq(
sys_tynatom, sys_ener, rcond=rcond
else:
assigned_atom_ener = None
energy_shift, _ = compute_stats_from_redu(
sys_ener.reshape(-1, 1),
sys_tynatom,
assigned_bias=assigned_atom_ener,
rcond=rcond,
)
if len(self.atom_ener) > 0:
for ii in assigned_ener_idx:
energy_shift[ii] = self.atom_ener_v[ii]
return energy_shift
return energy_shift.ravel()

def compute_input_stats(self, all_stat: dict, protection: float = 1e-2) -> None:
"""Compute the input statistics.
Expand Down
6 changes: 2 additions & 4 deletions deepmd/tf/fit/polar.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,16 +151,14 @@ def get_out_size(self) -> int:
"""Get the output size. Should be 9."""
return 9

def compute_input_stats(self, all_stat, protection=1e-2):
"""Compute the input statistics.
def compute_output_stats(self, all_stat):
"""Compute the output statistics.

Parameters
----------
all_stat
Dictionary of inputs.
can be prepared by model.make_stat_input
protection
Divided-by-zero protection
"""
if "polarizability" not in all_stat.keys():
self.avgeig = np.zeros([9])
Expand Down
11 changes: 8 additions & 3 deletions deepmd/utils/data_system.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,9 @@
from deepmd.utils.data import (
DeepmdData,
)
from deepmd.utils.out_stat import (
compute_stats_from_redu,
)

log = logging.getLogger(__name__)

Expand Down Expand Up @@ -248,10 +251,12 @@ def compute_energy_shift(self, rcond=None, key="energy"):
sys_tynatom = np.array(self.natoms_vec, dtype=GLOBAL_NP_FLOAT_PRECISION)
sys_tynatom = np.reshape(sys_tynatom, [self.nsystems, -1])
sys_tynatom = sys_tynatom[:, 2:]
energy_shift, resd, rank, s_value = np.linalg.lstsq(
sys_tynatom, sys_ener, rcond=rcond
energy_shift, _ = compute_stats_from_redu(
sys_ener.reshape(-1, 1),
sys_tynatom,
rcond=rcond,
)
return energy_shift
return energy_shift.ravel()

def add_dict(self, adict: dict) -> None:
"""Add items to the data system by a `dict`.
Expand Down
117 changes: 117 additions & 0 deletions deepmd/utils/out_stat.py
njzjz marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Output statistics."""
from typing import (
Optional,
Tuple,
)

import numpy as np


def compute_stats_from_redu(
output_redu: np.ndarray,
natoms: np.ndarray,
assigned_bias: Optional[np.ndarray] = None,
rcond: Optional[float] = None,
) -> Tuple[np.ndarray, np.ndarray]:
"""Compute the output statistics.

Given the reduced output value and the number of atoms for each atom,
compute the least-squares solution as the atomic output bais and std.

Parameters
----------
output_redu
The reduced output value, shape is [nframes, ndim].
natoms
The number of atoms for each atom, shape is [nframes, ntypes].
assigned_bias
The assigned output bias, shape is [ntypes, ndim]. Set to nan
if not assigned.
rcond
Cut-off ratio for small singular values of a.

Returns
-------
np.ndarray
The computed output bias, shape is [ntypes, ndim].
np.ndarray
The computed output std, shape is [ntypes, ndim].
"""
output_redu = np.array(output_redu)
natoms = np.array(natoms)
# check shape
assert output_redu.ndim == 2
assert natoms.ndim == 2
assert output_redu.shape[0] == natoms.shape[0] # nframes
if assigned_bias is not None:
assigned_bias = np.array(assigned_bias).reshape(
natoms.shape[1], output_redu.shape[1]
)
# compute output bias
if assigned_bias is not None:
# Atomic energies stats are incorrect if atomic energies are assigned.
# In this situation, we directly use these assigned energies instead of computing stats.
# This will make the loss decrease quickly
assigned_bias_atom_mask = ~np.isnan(assigned_bias).any(axis=1)
# assigned_bias_masked: nmask, ndim
assigned_bias_masked = assigned_bias[assigned_bias_atom_mask]
# assigned_bias_natoms: nframes, nmask
assigned_bias_natoms = natoms[:, assigned_bias_atom_mask]
# output_redu: nframes, ndim
output_redu -= np.einsum(
"ij,jk->ik", assigned_bias_natoms, assigned_bias_masked
)
# remove assigned atom
natoms[:, assigned_bias_atom_mask] = 0

# computed_output_bias: ntypes, ndim
computed_output_bias, _, _, _ = np.linalg.lstsq(natoms, output_redu, rcond=rcond)
if assigned_bias is not None:
# add back assigned atom; this might not be required
computed_output_bias[assigned_bias_atom_mask] = assigned_bias_masked
# rest_redu: nframes, ndim
rest_redu = output_redu - np.einsum("ij,jk->ik", natoms, computed_output_bias)
output_std = rest_redu.std(axis=0)
return computed_output_bias, output_std


def compute_stats_from_atomic(
output: np.ndarray,
atype: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray]:
"""Compute the output statistics.

Given the output value and the type of atoms,
compute the atomic output bais and std.

Parameters
----------
output
The output value, shape is [nframes, nloc, ndim].
atype
The type of atoms, shape is [nframes, nloc].

Returns
-------
np.ndarray
The computed output bias, shape is [ntypes, ndim].
np.ndarray
The computed output std, shape is [ntypes, ndim].
"""
output = np.array(output)
atype = np.array(atype)
# check shape
assert output.ndim == 3
assert atype.ndim == 2
assert output.shape[:2] == atype.shape
# compute output bias
nframes, nloc, ndim = output.shape
ntypes = atype.max() + 1
output_bias = np.zeros((ntypes, ndim))
output_std = np.zeros((ntypes, ndim))
for type_i in range(ntypes):
mask = atype == type_i
output_bias[type_i] = output[mask].mean(axis=0)
output_std[type_i] = output[mask].std(axis=0)
return output_bias, output_std
Loading