-
Notifications
You must be signed in to change notification settings - Fork 526
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add pairwise tabulation as an independent model #3101
Conversation
Add pairwise tabulation as an independent model, which can be summed with DP (DP + PairTab) by the linear model, other than interpolation. PairTab can be used for any pairwise potentials, e.g., d3, LJ, ZBL, etc. Signed-off-by: Jinzhe Zeng <[email protected]>
Signed-off-by: Jinzhe Zeng <[email protected]>
Signed-off-by: Jinzhe Zeng <[email protected]>
from deepmd.model.model import ( | ||
Model, | ||
) |
Check notice
Code scanning / CodeQL
Cyclic import Note
deepmd.model.model
from deepmd.entrypoints.train import ( | ||
update_one_sel, | ||
) |
Check notice
Code scanning / CodeQL
Cyclic import Note
deepmd.entrypoints.train
Codecov ReportAttention:
Additional details and impacted files@@ Coverage Diff @@
## devel #3101 +/- ##
==========================================
+ Coverage 75.82% 75.86% +0.04%
==========================================
Files 246 247 +1
Lines 24995 25075 +80
Branches 1597 1597
==========================================
+ Hits 18952 19023 +71
- Misses 5105 5114 +9
Partials 938 938 ☔ View full report in Codecov by Sentry. |
Signed-off-by: Jinzhe Zeng <[email protected]>
Signed-off-by: Jinzhe Zeng <[email protected]>
trainable=False, | ||
initializer=tf.constant_initializer(tab_data, dtype=tf.float64), | ||
) | ||
t_tmap = tf.constant(" ".join(self.type_map), name="tmap", dtype=tf.string) |
Check notice
Code scanning / CodeQL
Unused local variable Note
initializer=tf.constant_initializer(tab_data, dtype=tf.float64), | ||
) | ||
t_tmap = tf.constant(" ".join(self.type_map), name="tmap", dtype=tf.string) | ||
t_mt = tf.constant(self.model_type, name="model_type", dtype=tf.string) |
Check notice
Code scanning / CodeQL
Unused local variable Note
) | ||
t_tmap = tf.constant(" ".join(self.type_map), name="tmap", dtype=tf.string) | ||
t_mt = tf.constant(self.model_type, name="model_type", dtype=tf.string) | ||
t_ver = tf.constant(MODEL_VERSION, name="model_version", dtype=tf.string) |
Check notice
Code scanning / CodeQL
Unused local variable Note
t_ver = tf.constant(MODEL_VERSION, name="model_version", dtype=tf.string) | ||
|
||
with tf.variable_scope("fitting_attr" + suffix, reuse=reuse): | ||
t_dfparam = tf.constant(0, name="dfparam", dtype=tf.int32) |
Check notice
Code scanning / CodeQL
Unused local variable Note
|
||
with tf.variable_scope("fitting_attr" + suffix, reuse=reuse): | ||
t_dfparam = tf.constant(0, name="dfparam", dtype=tf.int32) | ||
t_daparam = tf.constant(0, name="daparam", dtype=tf.int32) |
Check notice
Code scanning / CodeQL
Unused local variable Note
t_dfparam = tf.constant(0, name="dfparam", dtype=tf.int32) | ||
t_daparam = tf.constant(0, name="daparam", dtype=tf.int32) | ||
with tf.variable_scope("descrpt_attr" + suffix, reuse=reuse): | ||
t_ntypes = tf.constant(self.ntypes, name="ntypes", dtype=tf.int32) |
Check notice
Code scanning / CodeQL
Unused local variable Note
t_daparam = tf.constant(0, name="daparam", dtype=tf.int32) | ||
with tf.variable_scope("descrpt_attr" + suffix, reuse=reuse): | ||
t_ntypes = tf.constant(self.ntypes, name="ntypes", dtype=tf.int32) | ||
t_rcut = tf.constant( |
Check notice
Code scanning / CodeQL
Unused local variable Note
Add pairwise tabulation as an independent model, which can be summed with DP (DP + PairTab) by the linear model, other than interpolation. PairTab can be used for any pairwise potentials, e.g., d3, LJ, ZBL, etc.
Fix #3099.