Skip to content

Commit

Permalink
Merge branch 'devel' into 3742
Browse files Browse the repository at this point in the history
  • Loading branch information
Chengqian-Zhang authored May 20, 2024
2 parents f5dea36 + 81b5949 commit f60300a
Show file tree
Hide file tree
Showing 36 changed files with 1,438 additions and 480 deletions.
7 changes: 6 additions & 1 deletion .github/workflows/test_python.yml
Original file line number Diff line number Diff line change
Expand Up @@ -24,13 +24,18 @@ jobs:
with:
python-version: ${{ matrix.python }}
- run: python -m pip install -U uv
- run: uv pip install --system --only-binary=horovod -e .[cpu,test,torch] horovod[tensorflow-cpu] mpi4py mpich
- run: |
uv pip install --system mpich
uv pip install --system "torch==2.3.0+cpu.cxx11.abi" -i https://download.pytorch.org/whl/
export PYTORCH_ROOT=$(python -c 'import torch;print(torch.__path__[0])')
uv pip install --system --only-binary=horovod -e .[cpu,test] horovod[tensorflow-cpu] mpi4py
env:
# Please note that uv has some issues with finding
# existing TensorFlow package. Currently, it uses
# TensorFlow in the build dependency, but if it
# changes, setting `TENSORFLOW_ROOT`.
TENSORFLOW_VERSION: ${{ matrix.python == '3.8' && '2.13.1' || '2.16.1' }}
DP_ENABLE_PYTORCH: 1
DP_BUILD_TESTING: 1
UV_EXTRA_INDEX_URL: "https://pypi.anaconda.org/njzjz/simple https://pypi.anaconda.org/mpi4py/simple"
- run: dp --version
Expand Down
14 changes: 14 additions & 0 deletions deepmd/dpmodel/descriptor/dpa1.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,12 @@ class DescrptDPA1(NativeOP, BaseDescriptor):
Setting this parameter to `True` is equivalent to setting `tebd_input_mode` to 'strip'.
Setting it to `False` is equivalent to setting `tebd_input_mode` to 'concat'.
The default value is `None`, which means the `tebd_input_mode` setting will be used instead.
use_econf_tebd: bool, Optional
Whether to use electronic configuration type embedding.
type_map: List[str], Optional
A list of strings. Give the name to each type of atoms.
Only used if `use_econf_tebd` is `True` in type embedding net.
spin
(Only support None to keep consistent with other backend references.)
(Not used in this version. Not-none option is not implemented.)
Expand Down Expand Up @@ -242,6 +248,8 @@ def __init__(
concat_output_tebd: bool = True,
spin: Optional[Any] = None,
stripped_type_embedding: Optional[bool] = None,
use_econf_tebd: bool = False,
type_map: Optional[List[str]] = None,
# consistent with argcheck, not used though
seed: Optional[int] = None,
) -> None:
Expand Down Expand Up @@ -287,12 +295,16 @@ def __init__(
trainable_ln=trainable_ln,
ln_eps=ln_eps,
)
self.use_econf_tebd = use_econf_tebd
self.type_map = type_map
self.type_embedding = TypeEmbedNet(
ntypes=ntypes,
neuron=[tebd_dim],
padding=True,
activation_function="Linear",
precision=precision,
use_econf_tebd=use_econf_tebd,
type_map=type_map,
)
self.tebd_dim = tebd_dim
self.concat_output_tebd = concat_output_tebd
Expand Down Expand Up @@ -457,6 +469,8 @@ def serialize(self) -> dict:
"smooth_type_embedding": obj.smooth,
"type_one_side": obj.type_one_side,
"concat_output_tebd": self.concat_output_tebd,
"use_econf_tebd": self.use_econf_tebd,
"type_map": self.type_map,
# make deterministic
"precision": np.dtype(PRECISION_DICT[obj.precision]).name,
"embeddings": obj.embeddings.serialize(),
Expand Down
13 changes: 13 additions & 0 deletions deepmd/dpmodel/descriptor/dpa2.py
Original file line number Diff line number Diff line change
Expand Up @@ -323,6 +323,8 @@ def __init__(
trainable: bool = True,
seed: Optional[int] = None,
add_tebd_to_repinit_out: bool = False,
use_econf_tebd: bool = False,
type_map: Optional[List[str]] = None,
):
r"""The DPA-2 descriptor. see https://arxiv.org/abs/2312.15492.
Expand Down Expand Up @@ -350,6 +352,11 @@ def __init__(
(Unused yet) Random seed for parameter initialization.
add_tebd_to_repinit_out : bool, optional
Whether to add type embedding to the output representation from repinit before inputting it into repformer.
use_econf_tebd : bool, Optional
Whether to use electronic configuration type embedding.
type_map : List[str], Optional
A list of strings. Give the name to each type of atoms.
Only used if `use_econf_tebd` is `True` in type embedding net.
Returns
-------
Expand Down Expand Up @@ -433,12 +440,16 @@ def init_subclass_params(sub_data, sub_class):
trainable_ln=self.repformer_args.trainable_ln,
ln_eps=self.repformer_args.ln_eps,
)
self.use_econf_tebd = use_econf_tebd
self.type_map = type_map
self.type_embedding = TypeEmbedNet(
ntypes=ntypes,
neuron=[self.repinit_args.tebd_dim],
padding=True,
activation_function="Linear",
precision=precision,
use_econf_tebd=use_econf_tebd,
type_map=type_map,
)
self.concat_output_tebd = concat_output_tebd
self.precision = precision
Expand Down Expand Up @@ -641,6 +652,8 @@ def serialize(self) -> dict:
"env_protection": self.env_protection,
"trainable": self.trainable,
"add_tebd_to_repinit_out": self.add_tebd_to_repinit_out,
"use_econf_tebd": self.use_econf_tebd,
"type_map": self.type_map,
"type_embedding": self.type_embedding.serialize(),
"g1_shape_tranform": self.g1_shape_tranform.serialize(),
}
Expand Down
8 changes: 4 additions & 4 deletions deepmd/dpmodel/infer/deep_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,10 +76,10 @@ def __init__(
self,
model_file: str,
output_def: ModelOutputDef,
*args: List[Any],
*args: Any,
auto_batch_size: Union[bool, int, AutoBatchSize] = True,
neighbor_list: Optional["ase.neighborlist.NewPrimitiveNeighborList"] = None,
**kwargs: Dict[str, Any],
**kwargs: Any,
):
self.output_def = output_def
self.model_path = model_file
Expand Down Expand Up @@ -161,12 +161,12 @@ def get_ntypes_spin(self):
def eval(
self,
coords: np.ndarray,
cells: np.ndarray,
cells: Optional[np.ndarray],
atom_types: np.ndarray,
atomic: bool = False,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
**kwargs: Dict[str, Any],
**kwargs: Any,
) -> Dict[str, np.ndarray]:
"""Evaluate the energy, force and virial by using this DP.
Expand Down
45 changes: 41 additions & 4 deletions deepmd/dpmodel/utils/type_embed.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,11 @@ class TypeEmbedNet(NativeOP):
Random seed for initializing the network parameters.
padding
Concat the zero padding to the output, as the default embedding of empty type.
use_econf_tebd: bool, Optional
Whether to use electronic configuration type embedding.
type_map: List[str], Optional
A list of strings. Give the name to each type of atoms.
Only used if `use_econf_tebd` is `True` in type embedding net.
"""

def __init__(
Expand All @@ -52,6 +57,8 @@ def __init__(
trainable: bool = True,
seed: Optional[int] = None,
padding: bool = False,
use_econf_tebd: bool = False,
type_map: Optional[List[str]] = None,
) -> None:
self.ntypes = ntypes
self.neuron = neuron
Expand All @@ -61,8 +68,33 @@ def __init__(
self.activation_function = str(activation_function)
self.trainable = trainable
self.padding = padding
self.use_econf_tebd = use_econf_tebd
self.type_map = type_map
embed_input_dim = ntypes
if self.use_econf_tebd:
from deepmd.utils.econf_embd import (
ECONF_DIM,
electronic_configuration_embedding,
)
from deepmd.utils.econf_embd import type_map as periodic_table

assert (
self.type_map is not None
), "When using electronic configuration type embedding, type_map must be provided!"

missing_types = [t for t in self.type_map if t not in periodic_table]
assert not missing_types, (
"When using electronic configuration type embedding, "
"all element in type_map should be in periodic table! "
f"Found these invalid elements: {missing_types}"
)
self.econf_tebd = np.array(
[electronic_configuration_embedding[kk] for kk in self.type_map],
dtype=PRECISION_DICT[self.precision],
)
embed_input_dim = ECONF_DIM
self.embedding_net = EmbeddingNet(
ntypes,
embed_input_dim,
self.neuron,
self.activation_function,
self.resnet_dt,
Expand All @@ -71,9 +103,12 @@ def __init__(

def call(self) -> np.ndarray:
"""Compute the type embedding network."""
embed = self.embedding_net(
np.eye(self.ntypes, dtype=PRECISION_DICT[self.precision])
)
if not self.use_econf_tebd:
embed = self.embedding_net(
np.eye(self.ntypes, dtype=PRECISION_DICT[self.precision])
)
else:
embed = self.embedding_net(self.econf_tebd)
if self.padding:
embed = np.pad(embed, ((0, 1), (0, 0)), mode="constant")
return embed
Expand Down Expand Up @@ -120,5 +155,7 @@ def serialize(self) -> dict:
"activation_function": self.activation_function,
"trainable": self.trainable,
"padding": self.padding,
"use_econf_tebd": self.use_econf_tebd,
"type_map": self.type_map,
"embedding": self.embedding_net.serialize(),
}
9 changes: 1 addition & 8 deletions deepmd/entrypoints/test.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,14 +46,7 @@
)

if TYPE_CHECKING:
from deepmd.tf.infer import (
DeepDipole,
DeepDOS,
DeepPolar,
DeepPot,
DeepWFC,
)
from deepmd.tf.infer.deep_tensor import (
from deepmd.infer.deep_tensor import (
DeepTensor,
)

Expand Down
3 changes: 1 addition & 2 deletions deepmd/infer/deep_dos.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
from typing import (
Any,
Dict,
List,
Optional,
Tuple,
Expand Down Expand Up @@ -70,7 +69,7 @@ def eval(
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
mixed_type: bool = False,
**kwargs: Dict[str, Any],
**kwargs: Any,
) -> Tuple[np.ndarray, ...]:
"""Evaluate energy, force, and virial. If atomic is True,
also return atomic energy and atomic virial.
Expand Down
23 changes: 12 additions & 11 deletions deepmd/infer/deep_eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
List,
Optional,
Tuple,
Type,
Union,
)

Expand Down Expand Up @@ -82,10 +83,10 @@ def __init__(
self,
model_file: str,
output_def: ModelOutputDef,
*args: List[Any],
*args: Any,
auto_batch_size: Union[bool, int, AutoBatchSize] = True,
neighbor_list: Optional["ase.neighborlist.NewPrimitiveNeighborList"] = None,
**kwargs: Dict[str, Any],
**kwargs: Any,
) -> None:
pass

Expand All @@ -99,12 +100,12 @@ def __new__(cls, model_file: str, *args, **kwargs):
def eval(
self,
coords: np.ndarray,
cells: np.ndarray,
cells: Optional[np.ndarray],
atom_types: np.ndarray,
atomic: bool = False,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
**kwargs: Dict[str, Any],
**kwargs: Any,
) -> Dict[str, np.ndarray]:
"""Evaluate the energy, force and virial by using this DP.
Expand Down Expand Up @@ -166,13 +167,13 @@ def get_dim_aparam(self) -> int:
def eval_descriptor(
self,
coords: np.ndarray,
cells: np.ndarray,
cells: Optional[np.ndarray],
atom_types: np.ndarray,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
efield: Optional[np.ndarray] = None,
mixed_type: bool = False,
**kwargs: Dict[str, Any],
**kwargs: Any,
) -> np.ndarray:
"""Evaluate descriptors by using this DP.
Expand Down Expand Up @@ -246,11 +247,11 @@ def _check_mixed_types(self, atom_types: np.ndarray) -> bool:
# assume mixed_types if there are virtual types, even when
# the atom types of all frames are the same
return False
return np.all(np.equal(atom_types, atom_types[0]))
return np.all(np.equal(atom_types, atom_types[0])).item()

@property
@abstractmethod
def model_type(self) -> "DeepEval":
def model_type(self) -> Type["DeepEval"]:
"""The the evaluator of the model type."""

@abstractmethod
Expand Down Expand Up @@ -316,10 +317,10 @@ def __new__(cls, model_file: str, *args, **kwargs):
def __init__(
self,
model_file: str,
*args: List[Any],
*args: Any,
auto_batch_size: Union[bool, int, AutoBatchSize] = True,
neighbor_list: Optional["ase.neighborlist.NewPrimitiveNeighborList"] = None,
**kwargs: Dict[str, Any],
**kwargs: Any,
) -> None:
self.deep_eval = DeepEvalBackend(
model_file,
Expand Down Expand Up @@ -387,7 +388,7 @@ def eval_descriptor(
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
mixed_type: bool = False,
**kwargs: Dict[str, Any],
**kwargs: Any,
) -> np.ndarray:
"""Evaluate descriptors by using this DP.
Expand Down
2 changes: 1 addition & 1 deletion deepmd/infer/deep_polar.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def eval(
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
mixed_type: bool = False,
**kwargs: dict,
**kwargs,
) -> np.ndarray:
"""Evaluate the model.
Expand Down
Loading

0 comments on commit f60300a

Please sign in to comment.