Skip to content

Commit

Permalink
add mask to atomic model output when an atomic type exclusion present…
Browse files Browse the repository at this point in the history
…s. (#3389)

This PR also
- introduce atomic_output_def used wraps the fitting_output_def. 
- atomic_output_def will be used by make_model
- add missing ut for pair and atom exclusions in dpmodel

See also #3357

---------

Co-authored-by: Han Wang <[email protected]>
  • Loading branch information
wanghan-iapcm and Han Wang authored Mar 2, 2024
1 parent e918106 commit cbeb1d5
Show file tree
Hide file tree
Showing 11 changed files with 180 additions and 17 deletions.
24 changes: 24 additions & 0 deletions deepmd/dpmodel/atomic_model/base_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,10 @@

import numpy as np

from deepmd.dpmodel.output_def import (
FittingOutputDef,
OutputVariableDef,
)
from deepmd.dpmodel.utils import (
AtomExcludeMask,
PairExcludeMask,
Expand Down Expand Up @@ -50,6 +54,25 @@ def reinit_pair_exclude(
else:
self.pair_excl = PairExcludeMask(self.get_ntypes(), self.pair_exclude_types)

def atomic_output_def(self) -> FittingOutputDef:
old_def = self.fitting_output_def()
if self.atom_excl is None:
return old_def
else:
old_list = list(old_def.get_data().values())
return FittingOutputDef(
old_list # noqa:RUF005
+ [
OutputVariableDef(
name="mask",
shape=[1],
reduciable=False,
r_differentiable=False,
c_differentiable=False,
)
]
)

def forward_common_atomic(
self,
extended_coord: np.ndarray,
Expand Down Expand Up @@ -79,6 +102,7 @@ def forward_common_atomic(
atom_mask = self.atom_excl.build_type_exclude_mask(atype)
for kk in ret_dict.keys():
ret_dict[kk] = ret_dict[kk] * atom_mask[:, :, None]
ret_dict["mask"] = atom_mask

return ret_dict

Expand Down
11 changes: 10 additions & 1 deletion deepmd/dpmodel/atomic_model/make_base_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,18 @@ class BAM(ABC):

@abstractmethod
def fitting_output_def(self) -> FittingOutputDef:
"""Get the fitting output def."""
"""Get the output def of developer implemented atomic models."""
pass

def atomic_output_def(self) -> FittingOutputDef:
"""Get the output def of the atomic model.
By default it is the same as FittingOutputDef, but it
allows model level wrapper of the output defined by the developer.
"""
return self.fitting_output_def()

@abstractmethod
def get_rcut(self) -> float:
"""Get the cut-off radius."""
Expand Down
12 changes: 10 additions & 2 deletions deepmd/dpmodel/descriptor/se_e2_a.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
Any,
List,
Optional,
Tuple,
)

from deepmd.dpmodel import (
Expand Down Expand Up @@ -168,12 +169,12 @@ def __init__(
self.resnet_dt = resnet_dt
self.trainable = trainable
self.type_one_side = type_one_side
self.exclude_types = exclude_types
self.set_davg_zero = set_davg_zero
self.activation_function = activation_function
self.precision = precision
self.spin = spin
self.emask = PairExcludeMask(self.ntypes, self.exclude_types)
# order matters, placed after the assignment of self.ntypes
self.reinit_exclude(exclude_types)

in_dim = 1 # not considiering type embedding
self.embeddings = NetworkCollection(
Expand Down Expand Up @@ -271,6 +272,13 @@ def cal_g(
gg = self.embeddings[embedding_idx].call(ss)
return gg

def reinit_exclude(
self,
exclude_types: List[Tuple[int, int]] = [],
):
self.exclude_types = exclude_types
self.emask = PairExcludeMask(self.ntypes, exclude_types=exclude_types)

def call(
self,
coord_ext,
Expand Down
12 changes: 9 additions & 3 deletions deepmd/dpmodel/fitting/general_fitting.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,13 +120,12 @@ def __init__(
self.use_aparam_as_mask = use_aparam_as_mask
self.spin = spin
self.mixed_types = mixed_types
self.exclude_types = exclude_types
# order matters, should be place after the assignment of ntypes
self.reinit_exclude(exclude_types)
if self.spin is not None:
raise NotImplementedError("spin is not supported")
self.remove_vaccum_contribution = remove_vaccum_contribution

self.emask = AtomExcludeMask(self.ntypes, self.exclude_types)

net_dim_out = self._net_out_dim()
# init constants
self.bias_atom_e = np.zeros([self.ntypes, net_dim_out])
Expand Down Expand Up @@ -214,6 +213,13 @@ def __getitem__(self, key):
else:
raise KeyError(key)

def reinit_exclude(
self,
exclude_types: List[int] = [],
):
self.exclude_types = exclude_types
self.emask = AtomExcludeMask(self.ntypes, self.exclude_types)

def serialize(self) -> dict:
"""Serialize the fitting to dict."""
return {
Expand Down
4 changes: 2 additions & 2 deletions deepmd/dpmodel/model/make_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ def __init__(

def model_output_def(self):
"""Get the output def for the model."""
return ModelOutputDef(self.fitting_output_def())
return ModelOutputDef(self.atomic_output_def())

def model_output_type(self) -> str:
"""Get the output type for the model."""
Expand Down Expand Up @@ -223,7 +223,7 @@ def call_lower(
)
model_predict = fit_output_to_model_output(
atomic_ret,
self.fitting_output_def(),
self.atomic_output_def(),
cc_ext,
do_atomic_virial=do_atomic_virial,
)
Expand Down
24 changes: 24 additions & 0 deletions deepmd/pt/model/atomic_model/base_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,10 @@
from deepmd.dpmodel.atomic_model import (
make_base_atomic_model,
)
from deepmd.dpmodel.output_def import (
FittingOutputDef,
OutputVariableDef,
)
from deepmd.pt.utils import (
AtomExcludeMask,
PairExcludeMask,
Expand Down Expand Up @@ -60,6 +64,25 @@ def reinit_pair_exclude(
def get_model_def_script(self) -> str:
return self.model_def_script

def atomic_output_def(self) -> FittingOutputDef:
old_def = self.fitting_output_def()
if self.atom_excl is None:
return old_def
else:
old_list = list(old_def.get_data().values())
return FittingOutputDef(
old_list # noqa:RUF005
+ [
OutputVariableDef(
name="mask",
shape=[1],
reduciable=False,
r_differentiable=False,
c_differentiable=False,
)
]
)

def forward_common_atomic(
self,
extended_coord: torch.Tensor,
Expand Down Expand Up @@ -90,6 +113,7 @@ def forward_common_atomic(
atom_mask = self.atom_excl(atype)
for kk in ret_dict.keys():
ret_dict[kk] = ret_dict[kk] * atom_mask[:, :, None]
ret_dict["mask"] = atom_mask

return ret_dict

Expand Down
10 changes: 5 additions & 5 deletions deepmd/pt/model/model/make_hessian_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def make_hessian_model(T_Model):
Parameters
----------
T_Model
The model. Should provide the `forward_common` and `fitting_output_def` methods
The model. Should provide the `forward_common` and `atomic_output_def` methods
Returns
-------
Expand All @@ -43,7 +43,7 @@ def __init__(
*args,
**kwargs,
)
self.hess_fitting_def = copy.deepcopy(super().fitting_output_def())
self.hess_fitting_def = copy.deepcopy(super().atomic_output_def())

def requires_hessian(
self,
Expand All @@ -56,7 +56,7 @@ def requires_hessian(
if kk in keys:
self.hess_fitting_def[kk].r_hessian = True

def fitting_output_def(self):
def atomic_output_def(self):
"""Get the fitting output def."""
return self.hess_fitting_def

Expand Down Expand Up @@ -102,7 +102,7 @@ def forward_common(
aparam=aparam,
do_atomic_virial=do_atomic_virial,
)
vdef = self.fitting_output_def()
vdef = self.atomic_output_def()
hess_yes = [vdef[kk].r_hessian for kk in vdef.keys()]
if any(hess_yes):
hess = self._cal_hessian_all(
Expand All @@ -128,7 +128,7 @@ def _cal_hessian_all(
box = box.view([nf, 9]) if box is not None else None
fparam = fparam.view([nf, -1]) if fparam is not None else None
aparam = aparam.view([nf, nloc, -1]) if aparam is not None else None
fdef = self.fitting_output_def()
fdef = self.atomic_output_def()
# keys of values that require hessian
hess_keys: List[str] = []
for kk in fdef.keys():
Expand Down
4 changes: 2 additions & 2 deletions deepmd/pt/model/model/make_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def __init__(

def model_output_def(self):
"""Get the output def for the model."""
return ModelOutputDef(self.fitting_output_def())
return ModelOutputDef(self.atomic_output_def())

@torch.jit.export
def model_output_type(self) -> str:
Expand Down Expand Up @@ -218,7 +218,7 @@ def forward_common_lower(
)
model_predict = fit_output_to_model_output(
atomic_ret,
self.fitting_output_def(),
self.atomic_output_def(),
cc_ext,
do_atomic_virial=do_atomic_virial,
)
Expand Down
65 changes: 65 additions & 0 deletions source/tests/common/dpmodel/test_dp_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,3 +50,68 @@ def test_self_consistency(
ret1 = md1.forward_common_atomic(self.coord_ext, self.atype_ext, self.nlist)

np.testing.assert_allclose(ret0["energy"], ret1["energy"])

def test_excl_consistency(self):
type_map = ["foo", "bar"]

# test the case of exclusion
for atom_excl, pair_excl in itertools.product([[], [1]], [[], [[0, 1]]]):
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
mixed_types=ds.mixed_types(),
)
md0 = DPAtomicModel(
ds,
ft,
type_map=type_map,
)
md1 = DPAtomicModel.deserialize(md0.serialize())

md0.reinit_atom_exclude(atom_excl)
md0.reinit_pair_exclude(pair_excl)
# hacking!
md1.descriptor.reinit_exclude(pair_excl)
md1.fitting.reinit_exclude(atom_excl)

# check energy consistency
args = [self.coord_ext, self.atype_ext, self.nlist]
ret0 = md0.forward_common_atomic(*args)
ret1 = md1.forward_common_atomic(*args)
np.testing.assert_allclose(
ret0["energy"],
ret1["energy"],
)

# check output def
out_names = [vv.name for vv in md0.atomic_output_def().get_data().values()]
if atom_excl == []:
self.assertEqual(out_names, ["energy"])
else:
self.assertEqual(out_names, ["energy", "mask"])
for ii in md0.atomic_output_def().get_data().values():
if ii.name == "mask":
self.assertEqual(ii.shape, [1])
self.assertFalse(ii.reduciable)
self.assertFalse(ii.r_differentiable)
self.assertFalse(ii.c_differentiable)

# check mask
if atom_excl == []:
pass
elif atom_excl == [1]:
self.assertIn("mask", ret0.keys())
expected = np.array([1, 1, 0], dtype=int)
expected = np.concatenate(
[expected, expected[self.perm[: self.nloc]]]
).reshape(2, 3)
np.testing.assert_array_equal(ret0["mask"], expected)
else:
raise ValueError(f"not expected atom_excl {atom_excl}")
27 changes: 27 additions & 0 deletions source/tests/pt/model/test_dp_atomic_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,7 @@ def test_excl_consistency(self):
md1.descriptor.reinit_exclude(pair_excl)
md1.fitting_net.reinit_exclude(atom_excl)

# check energy consistency
args = [
to_torch_tensor(ii)
for ii in [self.coord_ext, self.atype_ext, self.nlist]
Expand All @@ -162,3 +163,29 @@ def test_excl_consistency(self):
to_numpy_array(ret0["energy"]),
to_numpy_array(ret1["energy"]),
)

# check output def
out_names = [vv.name for vv in md0.atomic_output_def().get_data().values()]
if atom_excl == []:
self.assertEqual(out_names, ["energy"])
else:
self.assertEqual(out_names, ["energy", "mask"])
for ii in md0.atomic_output_def().get_data().values():
if ii.name == "mask":
self.assertEqual(ii.shape, [1])
self.assertFalse(ii.reduciable)
self.assertFalse(ii.r_differentiable)
self.assertFalse(ii.c_differentiable)

# check mask
if atom_excl == []:
pass
elif atom_excl == [1]:
self.assertIn("mask", ret0.keys())
expected = np.array([1, 1, 0], dtype=int)
expected = np.concatenate(
[expected, expected[self.perm[: self.nloc]]]
).reshape(2, 3)
np.testing.assert_array_equal(to_numpy_array(ret0["mask"]), expected)
else:
raise ValueError(f"not expected atom_excl {atom_excl}")
4 changes: 2 additions & 2 deletions source/tests/pt/model/test_make_hessian_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -166,8 +166,8 @@ def setUp(self):
self.model_hess.requires_hessian("energy")

def test_output_def(self):
self.assertTrue(self.model_hess.fitting_output_def()["energy"].r_hessian)
self.assertFalse(self.model_valu.fitting_output_def()["energy"].r_hessian)
self.assertTrue(self.model_hess.atomic_output_def()["energy"].r_hessian)
self.assertFalse(self.model_valu.atomic_output_def()["energy"].r_hessian)
self.assertTrue(self.model_hess.model_output_def()["energy"].r_hessian)
self.assertEqual(
self.model_hess.model_output_def()["energy_derv_r_derv_r"].category,
Expand Down

0 comments on commit cbeb1d5

Please sign in to comment.