forked from kubeflow/training-operator
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
s3 as dataset source code review changes
- Loading branch information
1 parent
b0600ce
commit 7342ee5
Showing
4 changed files
with
171 additions
and
96 deletions.
There are no files selected for viewing
145 changes: 145 additions & 0 deletions
145
examples/pytorch/language-modeling/train_api_hf_dataset.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# install kubeflow-training extra 'huggingface'\n", | ||
"!pip install -U 'kubeflow-training[huggingface]'" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# import the libraries\n", | ||
"from kubeflow.training.api.training_client import TrainingClient\n", | ||
"from kubeflow.storage_initializer.s3 import S3DatasetParams\n", | ||
"from kubeflow.storage_initializer.hugging_face import (\n", | ||
" HuggingFaceModelParams,\n", | ||
" HuggingFaceTrainParams,\n", | ||
" HfDatasetParams,\n", | ||
")\n", | ||
"from kubeflow.storage_initializer.constants import INIT_CONTAINER_MOUNT_PATH\n", | ||
"from peft import LoraConfig\n", | ||
"import transformers\n", | ||
"from transformers import TrainingArguments\n", | ||
"from kubeflow.training import constants" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 16, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# create a training client, pass config_file parameter if you want to use kubeconfig other than \"~/.kube/config\"\n", | ||
"client = TrainingClient()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"USING HUGGING FACE HUB AS THE DATASET STORE" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# mention the model, datasets and training parameters\n", | ||
"client.train(\n", | ||
" name=\"huggingface-test\",\n", | ||
" num_workers=2,\n", | ||
" num_procs_per_worker=1,\n", | ||
" # specify the storage class if you don't want to use the default one for the storage-initializer PVC\n", | ||
" # storage_config={\n", | ||
" # \"size\": \"10Gi\",\n", | ||
" # \"storage_class\": \"<your storage class>\",\n", | ||
" # },\n", | ||
" model_provider_parameters=HuggingFaceModelParams(\n", | ||
" model_uri=\"hf://TinyLlama/TinyLlama-1.1B-Chat-v1.0\",\n", | ||
" transformer_type=transformers.AutoModelForCausalLM,\n", | ||
" ),\n", | ||
" # it is assumed for text related tasks, you have 'text' column in the dataset.\n", | ||
" # for more info on how dataset is loaded check load_and_preprocess_data function in sdk/python/kubeflow/trainer/hf_llm_training.py\n", | ||
" dataset_provider_parameters=HfDatasetParams(repo_id=\"imdatta0/ultrachat_1k\"),\n", | ||
" train_parameters=HuggingFaceTrainParams(\n", | ||
" lora_config=LoraConfig(\n", | ||
" r=8,\n", | ||
" lora_alpha=8,\n", | ||
" lora_dropout=0.1,\n", | ||
" bias=\"none\",\n", | ||
" task_type=\"CAUSAL_LM\",\n", | ||
" ),\n", | ||
" training_parameters=TrainingArguments(\n", | ||
" num_train_epochs=1,\n", | ||
" per_device_train_batch_size=1,\n", | ||
" gradient_accumulation_steps=1,\n", | ||
" gradient_checkpointing=True,\n", | ||
" gradient_checkpointing_kwargs={\n", | ||
" \"use_reentrant\": False\n", | ||
" }, # this is mandatory if checkpointng is enabled\n", | ||
" warmup_steps=0.02,\n", | ||
" learning_rate=1,\n", | ||
" lr_scheduler_type=\"cosine\",\n", | ||
" bf16=False,\n", | ||
" logging_steps=0.01,\n", | ||
" output_dir=INIT_CONTAINER_MOUNT_PATH,\n", | ||
" optim=f\"sgd\",\n", | ||
" save_steps=0.01,\n", | ||
" save_total_limit=3,\n", | ||
" disable_tqdm=False,\n", | ||
" resume_from_checkpoint=True,\n", | ||
" remove_unused_columns=True,\n", | ||
" ddp_backend=\"nccl\", # change the backend to gloo if you want cpu based training and remove the gpu key in resources_per_worker\n", | ||
" ),\n", | ||
" ),\n", | ||
" resources_per_worker={\n", | ||
" \"gpu\": 1,\n", | ||
" \"cpu\": 8,\n", | ||
" \"memory\": \"8Gi\",\n", | ||
" }, # remove the gpu key if you don't want to attach gpus to the pods\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# check the logs of the job\n", | ||
"client.get_job_logs(name=\"huggingface-test\", job_kind=constants.PYTORCHJOB_KIND)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "myenv3.11", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters