Skip to content

ddolab/Multi-Cell-Line-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Cell-Line-Learning

This repository contains codes and data for the MCL paper. The following are the instructions to run the codes.

Citation

Coming soon

Requirements

Dependencies can be found in the environment.yml file.

⚠️ It is recommended to run IPOPT with HSL solvers here.

Usage

Prepare dataset

  1. Split datasets into the training and testing set and fill data into the template files, Data_input_train.xlsx and Data_input_test.xlsx.

    ⚠️ Notation change, $\beta$ of enzymes are equivailent to E0d columns in the excel file.

  2. Provide feasbile solutions of each steady-state time point to create warmstart points for the algorithm. The input template can be found in \SCL_MCL\Data\IGs\CL1\solution_CL1_1.csv. The filename (path) should follow the following template \SCL_MCL\Data\IGs\$cell-line-name\solution_$cell-line-name_$random-number.csv.

Steps to run SCL/MCL optimization codes in the SCL_MCL folder

  1. Solve SCL for each cell line

    python Wrapper.py -stg 1 -ti $cell-line-name
    

    Run the code with the specified $cell-line-name.

  2. Perform 5-fold cross-validation to tune lambda in MCL

    For each $\lambda$ value, change the input values of -l1 in the following code in the log scale, i.e. -1 for $\lambda = 0.1$.

    python Wrapper.py -kidx $kidx -l1 $l1 -np 16 -stg 2
    

    Run the code with -kidx from 1 to 5. Then, run the following code to do the model validation on the validation set.

    python Wrapper.py -kidx $kidx -l1 $l1 -np 16 -stg 3
    
  3. Solve MCL on the full dataset

    Based on the previous stage, pick up the optimal $\lambda$ value and run

    python Wrapper.py -l1 $l1 -np 16 -stg 4
    
  4. Model Validation on the testing data set

    Get the testing error for SCL:

    python Model_Validation.py -stg 1
    

    Get the testing error for MCL:

    python Model_Validation.py -l1 $l1 -stg 2
    

Steps to run the final cell-line models based on MCL in the Final_Model folder

  1. Move MCL solutions to input\Model_inputs_MCL.csv
  2. Run the steady-state simulation using the specified cell line and flux-state model
    python ModelWrapper.py -CL CL1 -fs HF -mu_target 1.0 -gln_target 2.5 -glcUB 30 -glcLB 5 -lacUB 15 -lacLB 2.0 -step_number 20 -init_step_size 0.5 -stop_step_size 1e-1 -fname SS_sol
    
    Read the ModelWrapper.py file for the details of the input arguments.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages