Skip to content

The purpose of our research is to study reinforcement learning approaches to building a movie recommender system. We formulate the problem of interactive recommendation as a contextual multi-armed bandit.

Notifications You must be signed in to change notification settings

davidch413/RL-movie-recommender

 
 

Repository files navigation

RL-movie-recommender

Abstract

The purpose of our research is to study reinforcement learning approaches to building a movie recommender system. We formulate the problem of interactive recommendation as a contextual multi-armed bandit, learning user preferences recommending new movies and receiving their ratings. We show that using reinforcement learning solves the problem of exploitation-exploration trade-off and the cold-start problem. We integrate the novelty of movies to the model. We explore a content based approach as well as a collaborative filtering approach and both yield viable recommendation results.

About

The purpose of our research is to study reinforcement learning approaches to building a movie recommender system. We formulate the problem of interactive recommendation as a contextual multi-armed bandit.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 51.3%
  • HTML 47.7%
  • TeX 1.0%