Skip to content

Commit

Permalink
Create new examples for OCR -> Extract Text workflow
Browse files Browse the repository at this point in the history
Adds new examples to show how to pair the new OCR tool with the Extract
Text tool.
  • Loading branch information
datalogics-jacksonm committed Jul 26, 2024
1 parent bed956c commit cfc5b7c
Show file tree
Hide file tree
Showing 6 changed files with 413 additions and 0 deletions.
62 changes: 62 additions & 0 deletions DotNET/Complex Flow Examples/ocr-with-extract-text.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
using Newtonsoft.Json.Linq;
using System;
using System.IO;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;

class Program
{
private static readonly string apiKey = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"; // Your API key here

static async Task Main(string[] args)
{
using (var httpClient = new HttpClient { BaseAddress = new Uri("https://api.pdfrest.com") })
{
// Upload PDF for OCR
using var ocrRequest = new HttpRequestMessage(HttpMethod.Post, "pdf-with-ocr-text");

ocrRequest.Headers.TryAddWithoutValidation("Api-Key", apiKey);
ocrRequest.Headers.Accept.Add(new System.Net.Http.Headers.MediaTypeWithQualityHeaderValue("application/json"));
var ocrMultipartContent = new MultipartFormDataContent();

var pdfByteArray = File.ReadAllBytes("/path/to/file.pdf");
var pdfByteArrayContent = new ByteArrayContent(pdfByteArray);
ocrMultipartContent.Add(pdfByteArrayContent, "file", "file.pdf");
pdfByteArrayContent.Headers.TryAddWithoutValidation("Content-Type", "application/pdf");
ocrMultipartContent.Add(new StringContent("example_pdf-with-ocr-text_out"), "output");

ocrRequest.Content = ocrMultipartContent;
var ocrResponse = await httpClient.SendAsync(ocrRequest);

var ocrResult = await ocrResponse.Content.ReadAsStringAsync();
Console.WriteLine("OCR response received.");
Console.WriteLine(ocrResult);

dynamic ocrResponseData = JObject.Parse(ocrResult);
string ocrPDFID = ocrResponseData.outputId;

// Extract text from OCR'd PDF
using var extractTextRequest = new HttpRequestMessage(HttpMethod.Post, "extracted-text");

extractTextRequest.Headers.TryAddWithoutValidation("Api-Key", apiKey);
extractTextRequest.Headers.Accept.Add(new System.Net.Http.Headers.MediaTypeWithQualityHeaderValue("application/json"));
var extractTextMultipartContent = new MultipartFormDataContent();

extractTextMultipartContent.Add(new StringContent(ocrPDFID), "id");

extractTextRequest.Content = extractTextMultipartContent;
var extractTextResponse = await httpClient.SendAsync(extractTextRequest);

var extractTextResult = await extractTextResponse.Content.ReadAsStringAsync();
Console.WriteLine("Extract text response received.");
Console.WriteLine(extractTextResult);

dynamic extractTextResponseData = JObject.Parse(extractTextResult);
string fullText = extractTextResponseData.fullText;

Console.WriteLine("Extracted text:");
Console.WriteLine(fullText);
}
}
}
106 changes: 106 additions & 0 deletions Java/Complex Flow Examples/OcrWithExtractText.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
import io.github.cdimascio.dotenv.Dotenv;
import java.io.File;
import java.io.IOException;
import java.util.concurrent.TimeUnit;
import okhttp3.*;
import org.json.JSONObject;

/* In this sample, we will show how to convert a scanned document into a PDF with
* searchable and extractable text using Optical Character Recognition (OCR), and then
* extract that text from the newly created document.
*
* First, we will upload a scanned PDF to the /pdf-with-ocr-text route and capture the
* output ID. Then, we will send the output ID to the /extracted-text route, which will
* return the newly added text.
*/

public class OcrWithExtractText {

// Specify the path to your PDF file here, or as the first argument when running the program.
private static final String DEFAULT_PDF_FILE_PATH = "/path/to/file.pdf";

// Specify your API key here, or in the environment variable PDFREST_API_KEY.
// You can also put the environment variable in a .env file.
private static final String DEFAULT_API_KEY = "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx";

public static void main(String[] args) {
File pdfFile;
if (args.length > 0) {
pdfFile = new File(args[0]);
} else {
pdfFile = new File(DEFAULT_PDF_FILE_PATH);
}

final Dotenv dotenv = Dotenv.configure().ignoreIfMalformed().ignoreIfMissing().load();

final RequestBody pdfFileRequestBody =
RequestBody.create(pdfFile, MediaType.parse("application/pdf"));
RequestBody ocrRequestBody =
new MultipartBody.Builder()
.setType(MultipartBody.FORM)
.addFormDataPart("file", pdfFile.getName(), pdfFileRequestBody)
.addFormDataPart("output", "example_pdf-with-ocr-text_out")
.build();
Request ocrRequest =
new Request.Builder()
.header("Api-Key", dotenv.get("PDFREST_API_KEY", DEFAULT_API_KEY))
.url("https://api.pdfrest.com/pdf-with-ocr-text")
.post(ocrRequestBody)
.build();
try {
OkHttpClient ocrClient =
new OkHttpClient().newBuilder().readTimeout(60, TimeUnit.SECONDS).build();

Response ocrResponse = ocrClient.newCall(ocrRequest).execute();

System.out.println("Response status code: " + ocrResponse.code());
if (ocrResponse.body() != null) {
String ocrResponseString = ocrResponse.body().string();

JSONObject ocrJSON = new JSONObject(ocrResponseString);
if (ocrJSON.has("error")) {
System.out.println("Error during OCR call: " + ocrResponseString);
return;
}

String ocrPDFID = ocrJSON.get("outputId").toString();
System.out.println("Got the output ID: " + ocrPDFID);

RequestBody extractRequestBody =
new MultipartBody.Builder()
.setType(MultipartBody.FORM)
.addFormDataPart("id", ocrPDFID)
.build();
Request extractRequest =
new Request.Builder()
.header("Api-Key", dotenv.get("PDFREST_API_KEY", DEFAULT_API_KEY))
.url("https://api.pdfrest.com/extracted-text")
.post(extractRequestBody)
.build();
try {
OkHttpClient extractClient =
new OkHttpClient().newBuilder().readTimeout(60, TimeUnit.SECONDS).build();

Response extractResponse = extractClient.newCall(extractRequest).execute();

System.out.println("Response status code: " + extractResponse.code());
if (extractResponse.body() != null) {
String extractResponseString = extractResponse.body().string();

JSONObject extractJSON = new JSONObject(extractResponseString);
if (extractJSON.has("error")) {
System.out.println("Error during text extraction call: " + extractResponseString);
return;
}

System.out.println(extractJSON.getString("fullText"));
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
74 changes: 74 additions & 0 deletions JavaScript/Complex Flow Examples/ocr-with-extract-text.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
var axios = require("axios");
var FormData = require("form-data");
var fs = require("fs");

/* In this sample, we will show how to convert a scanned document into a PDF with
* searchable and extractable text using Optical Character Recognition (OCR), and then
* extract that text from the newly created document.
*
* First, we will upload a scanned PDF to the /pdf-with-ocr-text route and capture the
* output ID. Then, we will send the output ID to the /extracted-text route, which will
* return the newly added text.
*/

var apiKey = "xxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"; // Replace with your API key

var ocrData = new FormData();
ocrData.append("file", fs.createReadStream("/path/to/file.pdf"), "file_name.pdf");
ocrData.append("output", "example_pdf-with-ocr-text_out");

var ocrConfig = {
method: "post",
maxBodyLength: Infinity,
url: "https://api.pdfrest.com/pdf-with-ocr-text",
headers: {
"Api-Key": apiKey,
...ocrData.getHeaders(),
},
data: ocrData,
};

console.log("Sending POST request to OCR endpoint...");
axios(ocrConfig)
.then(function (response) {
console.log("Response status code: " + response.status);

if (response.status === 200) {
var ocrPDFID = response.data.outputId;
console.log("Got the output ID: " + ocrPDFID);

var extractData = new FormData();
extractData.append("id", ocrPDFID);

var extractConfig = {
method: "post",
maxBodyLength: Infinity,
url: "https://api.pdfrest.com/extracted-text",
headers: {
"Api-Key": apiKey,
...extractData.getHeaders(),
},
data: extractData,
};

console.log("Sending POST request to extract text endpoint...");
axios(extractConfig)
.then(function (extractResponse) {
console.log("Response status code: " + extractResponse.status);

if (extractResponse.status === 200) {
console.log(extractResponse.data.fullText);
} else {
console.log(extractResponse.data);
}
})
.catch(function (error) {
console.log(error.response ? error.response.data : error.message);
});
} else {
console.log(response.data);
}
})
.catch(function (error) {
console.log(error.response ? error.response.data : error.message);
});
72 changes: 72 additions & 0 deletions PHP/Complex Flow Examples/ocr-with-extract-text.php
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
<?php

require 'vendor/autoload.php';

use GuzzleHttp\Client;
use GuzzleHttp\Psr7\Request;
use GuzzleHttp\Psr7\Utils;

/* In this sample, we will show how to convert a scanned document into a PDF with
* searchable and extractable text using Optical Character Recognition (OCR), and then
* extract that text from the newly created document.
*
* First, we will upload a scanned PDF to the /pdf-with-ocr-text route and capture the
* output ID. Then, we will send the output ID to the /extracted-text route, which will
* return the newly added text.
*/

$client = new Client();

$headers = [
'Api-Key' => 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' // Replace with your API key
];

// Upload PDF for OCR
$pdfToOCROptions = [
'multipart' => [
[
'name' => 'file',
'contents' => Utils::tryFopen('/path/to/file.pdf', 'r'),
'filename' => 'file.pdf',
'headers' => [
'Content-Type' => 'application/pdf'
]
],
[
'name' => 'output',
'contents' => 'example_pdf-with-ocr-text_out'
]
]
];

$pdfToOCRRequest = new Request('POST', 'https://api.pdfrest.com/pdf-with-ocr-text', $headers);

echo "Sending POST request to OCR endpoint...\n";
$pdfToOCRResponse = $client->sendAsync($pdfToOCRRequest, $pdfToOCROptions)->wait();

echo "Response status code: " . $pdfToOCRResponse->getStatusCode() . "\n";

$ocrPDFID = json_decode($pdfToOCRResponse->getBody())->outputId;
echo "Got the output ID: " . $ocrPDFID . "\n";

// Extract text from OCR'd PDF
$extractTextOptions = [
'multipart' => [
[
'name' => 'id',
'contents' => $ocrPDFID
]
]
];

$extractTextRequest = new Request('POST', 'https://api.pdfrest.com/extracted-text', $headers);

echo "Sending POST request to extract text endpoint...\n";
$extractTextResponse = $client->sendAsync($extractTextRequest, $extractTextOptions)->wait();

echo "Response status code: " . $extractTextResponse->getStatusCode() . "\n";

$fullText = json_decode($extractTextResponse->getBody())->fullText;
echo $fullText . "\n";

?>
67 changes: 67 additions & 0 deletions Python/Complex Flow Examples/ocr-with-extract-text.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
from requests_toolbelt import MultipartEncoder
import requests


# In this sample, we will show how to convert a scanned document into a PDF with
# searchable and extractable text using Optical Character Recognition (OCR), and then
# extract that text from the newly created document.
#
# First, we will upload a scanned PDF to the /pdf-with-ocr-text route and capture the
# output ID. Then, we will send the output ID to the /extracted-text route, which will
# return the newly added text.

api_key = 'xxxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' # place your api key here

ocr_endpoint_url = 'https://api.pdfrest.com/pdf-with-ocr-text'
mp_encoder_pdf = MultipartEncoder(
fields={
'file': ('file_name.pdf', open('/path/to/file.pdf', 'rb'), 'application/pdf'),
'output': 'example_pdf-with-ocr-text_out',
}
)

image_headers = {
'Accept': 'application/json',
'Content-Type': mp_encoder_pdf.content_type,
'Api-Key': api_key
}

print("Sending POST request to OCR endpoint...")
response = requests.post(ocr_endpoint_url, data=mp_encoder_pdf, headers=image_headers)

print("Response status code: " + str(response.status_code))

if response.ok:
response_json = response.json()
ocr_pdf_id = response_json["outputId"]
print("Got the output ID: " + ocr_pdf_id)

extract_endpoint_url = 'https://api.pdfrest.com/extracted-text'

mp_encoder_extract_text = MultipartEncoder(
fields={
'id': ocr_pdf_id
}
)

extract_text_headers = {
'Accept': 'application/json',
'Content-Type': mp_encoder_extract_text.content_type,
'Api-Key': api_key
}

print("Sending POST request to extract text endpoint...")
extract_response = requests.post(extract_endpoint_url, data=mp_encoder_extract_text, headers=extract_text_headers)

print("Response status code: " + str(extract_response.status_code))

if extract_response.ok:
extract_json = extract_response.json()
print(extract_json["fullText"])

else:
print(extract_response.text)


else:
print(response.text)
Loading

0 comments on commit cfc5b7c

Please sign in to comment.