Skip to content

Adversarial attacks on state of the art monocular depth estimation networks

Notifications You must be signed in to change notification settings

danielzgsilva/MonoDepthAttacks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MonoDepthAttacks

Adversarial attacks on state of the art monocular depth estimation networks

  • Contains FCRN, AdaBins, and DPT depth estimation networks
  • Implements PGD, FGSM, and MI-FGSM adversarial attacks
    • Non-targeted and targeted versions with L1, L2, and Reverse Huber loss options
  • Support for KITTI and NYUv2 depth datasets

FCRN reference: https://arxiv.org/abs/1606.00373
AdaBins reference: https://arxiv.org/abs/2011.14141
DPT reference: https://arxiv.org/abs/2103.13413

Usage

This work runs on Python 3 and PyTorch 1.6+

Installation

Install dependencies

Clone this repo:
git clone https://github.com/danielzgsilva/MonoDepthAttacks
cd MonoDepthAttacks

Download the NYUv2 dataset: http://horatio.cs.nyu.edu/mit/silberman/nyu_depth_v2/nyu_depth_v2_labeled.mat
Download the KITTI Raw dataset: http://www.cvlibs.net/datasets/kitti/raw_data.php
Download the KITTI Depth dataset: http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction

Configure your dataset paths in "dataloaders/path.py".

Training

Examples for training an FCRN model from scratch:
python main.py --dataset kitti --lr 0.001 --epochs 20 --optim adam --resnet_layers 50 --loss berhu
python main.py --dataset nyu --lr 0.001 --epochs 20 --optim adam --resnet_layers 18 --loss l1

Example for finetuning a FCRN model via FGSM adversarial training:
python main.py --model resnet --dataset kitti --lr 0.0001 --epochs 10 --optim adam --resnet_layers 50 --loss l2 --resume /path/to/model --adv_training True --attack mifgsm --iterations 1 --epsilon 5 --alpha 5

We do not support training AdaBins or DPT from scratch, but pretrained models can be found here:
AdaBins: https://github.com/shariqfarooq123/AdaBins
DPT: https://github.com/intel-isl/DPT

Evaluation

Evaluating a given model:
python eval.py --dataset kitti --model dpt--resume /path/to/model --attack none

Attacking and evaluating a given model:
python eval.py --dataset kitti --model adabins --resume /path/to/model --attack mifgsm --epsilon 3
python eval.py --dataset nyu --model dpt --resume /path/to/model --attack pgd --targeted True --move_target 1.0

(Note that the above are simply examples and do not necessarily result in optimal performance)

List of available arguments:

  • --num_agents | number of agents to spawn into the world
  • --model | model to use (resnet, adabins, dpt)
  • --attack | attack to run (pgd, mifgsm)
  • --adv_training | perform adversarial training
  • --eval_output_dir | directory to save evaluation results and images
  • --decoder | type of FCRN decoder (upproj, upconv, deconv, fasterupproj)
  • --resnet_layers | number of layers in FCRN encoder (18, 34, 50, 101, 152)
  • --resume | path of model to load
  • --batch-size | mini-batch size
  • --loss | l1, l2, or berhu
  • --epochs | help='number of total epochs to run
  • --optim | pytorch optimizer for training (sgd, adam)
  • --learning-rate | initial learning rate
  • --lr_patience | patience of LR scheduler
  • --scheduler | learning rate scheduler during training
  • --momentum | momentum term for optimizer if applicable
  • --weight_decay | weight decay for optimizer if applicable
  • --workers | number of data loading workers
  • --dataset | nyu or kitti
  • --manual_seed | manually set random seed
  • --print-freq | print frequency of metrics during training or eval
  • --targeted | Choose if adversarial attack is targeted (defaults to attack car class in KITTI)
  • --move_target | scaling factor by which to perturb depth of targeted class
  • --epsilon | maximum perturbation magnitude
  • --iterations | number of pgd or mi-fgsm iterations
  • --alpha | step size for pgd or mi-fgsm
  • --g_smooth | add translational invariance to the adversarial attack
  • --k | kernel size during guassian smoothing for translation invariance

About

Adversarial attacks on state of the art monocular depth estimation networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages