-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add New modules (TwoStageNeuralFields, Renderer)
- Loading branch information
1 parent
5ee0751
commit 84ccb73
Showing
4 changed files
with
519 additions
and
40 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import configargparse | ||
import datetime | ||
import json | ||
import os | ||
import random | ||
import sys | ||
from torch.utils.tensorboard import SummaryWriter | ||
from tqdm.auto import tqdm | ||
|
||
from dataLoader import dataset_dict | ||
from models import TwoStageNeuralField, Renderer | ||
from models.grid_based import TensoRF_VM | ||
from models.modules import MLP, Softplus, EmptyMLP, LRAmplifier | ||
from utils import * | ||
|
||
|
||
parser = configargparse.ArgumentParser() | ||
parser.add_argument('--config', is_config_file=True, | ||
help='config file path') | ||
parser.add_argument("--expname", type=str, help='experiment name') | ||
parser.add_argument("--save_path", type=str, default='./log', | ||
help='where to store ckpts and logs') | ||
parser.add_argument("--datadir", type=str, default='../nerf_synthetic/chair', | ||
help='input data directory') | ||
|
||
# dataset | ||
parser.add_argument('--downsample_train', type=float, default=1.0) | ||
parser.add_argument('--downsample_test', type=float, default=1.0) | ||
parser.add_argument('--dataset_name', type=str, default='blender', | ||
choices=['blender', 'llff', 'nsvf', 'dtu', | ||
'tankstemple', 'own_data']) | ||
|
||
# network decoder | ||
parser.add_argument("--pos_pe", type=int, default=0, | ||
help='number of pe for pos') | ||
parser.add_argument("--view_pe", type=int, default=2, | ||
help='number of pe for view') | ||
parser.add_argument("--feat_pe", type=int, default=2, | ||
help='number of pe for features') | ||
parser.add_argument("--hidden_dim", type=int, default=128, | ||
help='hidden feature channel in MLP') | ||
|
||
# training hyperparameters | ||
parser.add_argument("--batch_size", type=int, default=4096) | ||
parser.add_argument("--n_iters", type=int, default=30000) | ||
parser.add_argument("--lr_init", type=float, default=0.02) | ||
parser.add_argument("--tv_weight", type=float, default=0.0) | ||
|
||
# rendering options | ||
parser.add_argument('--ndc_ray', action='store_true') | ||
parser.add_argument('--n_samples', type=int, default=1024, | ||
help='sample point each ray, pass 1e6 if automatic adjust') | ||
|
||
|
||
def main(args): | ||
n_samples = args.n_samples | ||
ndc_ray = args.ndc_ray | ||
|
||
# init dataset | ||
dataset = dataset_dict[args.dataset_name] | ||
train_dataset = dataset(args.datadir, split='train', | ||
downsample=args.downsample_train, is_stack=False) | ||
test_dataset = dataset(args.datadir, split='test', | ||
downsample=args.downsample_train, is_stack=True) | ||
|
||
allrays = train_dataset.all_rays.cuda(non_blocking=True) | ||
allrgbs = train_dataset.all_rgbs.cuda(non_blocking=True) | ||
|
||
white_bg = train_dataset.white_bg | ||
near, far = train_dataset.near_far | ||
bbox = train_dataset.scene_bbox.cuda() | ||
|
||
# TODO(daniel): loading weights | ||
|
||
# defining networks | ||
density_net = TwoStageNeuralField( | ||
TensoRF_VM(300, 16, 1), EmptyMLP()).cuda() | ||
appearance_net = TwoStageNeuralField( | ||
TensoRF_VM(300, 48, 27), | ||
MLP(27, include_pos=False, include_view=True, | ||
feat_n_freq=args.feat_pe, pos_n_freq=args.pos_pe, | ||
view_n_freq=args.view_pe, | ||
hidden_dim=args.hidden_dim, out_activation='sigmoid')).cuda() | ||
|
||
renderer = Renderer(density_net, appearance_net, | ||
n_samples_per_ray=n_samples, | ||
bounding_box=bbox, | ||
near=near, far=far, white_bg=white_bg, | ||
density_activation='softplus') | ||
print(renderer) | ||
print(f'SIZE: {renderer.compute_bits() / 8_388_608 :.2f} MB') | ||
|
||
optimizer = torch.optim.Adam( | ||
[{'params': density_net.parameters(), 'lr': 0.02}, | ||
{'params': (appearance_net.first_stage.planes, | ||
appearance_net.first_stage.vectors),'lr': 0.02}, | ||
{'params': appearance_net.first_stage.basis_mat.parameters(), | ||
'lr': 1e-3}, | ||
{'params': appearance_net.second_stage.parameters(), 'lr': 1e-3}], | ||
betas=(0.9, 0.99)) | ||
scheduler = get_cos_warmup_scheduler(optimizer, args.n_iters, 0) | ||
scaler = torch.cuda.amp.GradScaler() | ||
|
||
pbar = tqdm(range(args.n_iters)) | ||
for i in pbar: | ||
indices = torch.randint(len(allrays), (args.batch_size,)).cuda() | ||
rays_train = torch.index_select(allrays, 0, indices) | ||
rgb_train = torch.index_select(allrgbs, 0, indices) | ||
|
||
optimizer.zero_grad() | ||
|
||
with torch.cuda.amp.autocast(enabled=True): | ||
rgb_map, depth_map = renderer(rays_train) | ||
|
||
loss = F.mse_loss(rgb_map, rgb_train) | ||
|
||
# loss | ||
total_loss = loss | ||
if args.tv_weight > 0: | ||
total_loss += renderer.compute_tv() * args.tv_weight | ||
|
||
assert not torch.isnan(loss) | ||
scaler.scale(total_loss).backward(retain_graph=True) | ||
|
||
# total_loss.backward() | ||
# optimizer.step() | ||
scaler.unscale_(optimizer) | ||
scaler.step(optimizer) | ||
scaler.update() | ||
|
||
scheduler.step() | ||
|
||
psnr = mse2psnr_np(loss.detach().item()) | ||
pbar.set_description(f'Iter {i:05d}: train={psnr:.3f}') | ||
|
||
if i + 1 in [500, 1000, 2500, 5000, 10000, 20000]: | ||
print() | ||
|
||
PSNRs_test = rendere.evaluation(test_dataset) | ||
print(f'======> {args.expname} test all psnr: {np.mean(PSNRs_test)} ' | ||
f'<========================') | ||
|
||
|
||
if __name__ == '__main__': | ||
torch.manual_seed(20211202) | ||
np.random.seed(20211202) | ||
|
||
args = parser.parse_args() | ||
print(args) | ||
|
||
main(args) | ||
|
Oops, something went wrong.