-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from daniel03c1/snam
Snam
- Loading branch information
Showing
7 changed files
with
652 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,314 @@ | ||
import os | ||
import math | ||
from opt import config_parser | ||
from renderer import * | ||
from utils import * | ||
from huffman import * | ||
from run_length_encoding.rle.np_impl import dense_to_rle, rle_to_dense | ||
from collections import OrderedDict | ||
from dataLoader import dataset_dict | ||
|
||
|
||
def bit2byte(enc): | ||
BIT = 8 | ||
length = len(enc) | ||
total_int = math.ceil(length/BIT) | ||
|
||
start, out = 0, [] | ||
for i in range(total_int): | ||
target = enc[start:start+BIT] | ||
out.append(int(target, 2)) | ||
start += BIT | ||
|
||
last_target_length = length - BIT * (total_int - 1) | ||
out.append(last_target_length) | ||
enc_byte_tensor = torch.ByteTensor(out) | ||
return enc_byte_tensor | ||
|
||
|
||
def byte2bit(bytes): | ||
bit = [] | ||
bytecode = bytes[:-2] | ||
for byte in bytecode: | ||
b = format(byte, '08b') | ||
bit.append(b) | ||
|
||
last_ele = format(bytes[-2], 'b') # 이걸 왜 08로 안했지? | ||
last_tar_len = bytes[-1] | ||
num_to_add_zeros = last_tar_len - len(last_ele) | ||
output =''.join(bit) + '0'*num_to_add_zeros + last_ele | ||
return output | ||
|
||
|
||
def quantize_float(inputs, bits): | ||
if bits == 32: | ||
return inputs | ||
n = float(2**(bits-1) - 1) | ||
out = np.floor(np.abs(inputs) * n) / n | ||
rounded = out * np.sign(inputs) | ||
return rounded | ||
|
||
def quantize_int(inputs, bits): | ||
if bits == 32: | ||
return inputs | ||
minvl = torch.amin(inputs) | ||
maxvl = torch.amax(inputs) | ||
scale = (maxvl - minvl).clip(min=1e-8) / (2**bits-2) | ||
rounded = torch.round((inputs - minvl)/scale) + 1 | ||
return rounded, scale, minvl | ||
|
||
def dequantize_int(inputs, scale, minvl): | ||
return (inputs - 1) * scale + minvl | ||
|
||
|
||
@torch.no_grad() | ||
def compress_method1(args, device): # save grid + mask | ||
# check if ckpt exists | ||
if not os.path.exists(args.ckpt): | ||
print("the ckpt path does not exists!") | ||
return | ||
|
||
# load checkpoint | ||
ckpt = torch.load(args.ckpt, map_location=device) | ||
|
||
# update kwargs | ||
kwargs = ckpt['kwargs'] | ||
|
||
kwargs.update({'device': device}) | ||
kwargs.update({'use_mask': args.use_mask}) | ||
kwargs.update({'use_dwt': args.use_dwt}) | ||
kwargs.update({'dwt_level': args.dwt_level}) | ||
|
||
# make model | ||
tensorf = eval(args.model_name)(**kwargs) | ||
tensorf.load(ckpt) | ||
|
||
# ship to cpu | ||
tensorf.to('cpu') | ||
|
||
# mask shape | ||
mask_shape = { | ||
"density_plane": [x.shape for x in tensorf.density_plane_mask], | ||
"density_line": [x.shape for x in tensorf.density_line_mask], | ||
"app_plane": [x.shape for x in tensorf.app_plane_mask], | ||
"app_line": [x.shape for x in tensorf.app_line_mask] | ||
} | ||
|
||
# (1) binarize mask | ||
den_plane_mask, den_line_mask = [], [] | ||
app_plane_mask, app_line_mask = [], [] | ||
for i in range(3): | ||
den_plane_mask += [torch.where(tensorf.density_plane_mask[i]>=0, 1, 0)] | ||
den_line_mask += [torch.where(tensorf.density_line_mask[i]>=0, 1, 0)] | ||
app_plane_mask += [torch.where(tensorf.app_plane_mask[i]>=0, 1, 0)] | ||
app_line_mask += [torch.where(tensorf.app_line_mask[i]>=0, 1, 0)] | ||
|
||
# (2) get non-masked values in the feature grids | ||
|
||
den_plane, den_line = [], [] | ||
app_plane, app_line = [], [] | ||
for i in range(3): | ||
den_plane += [tensorf.density_plane[i][(den_plane_mask[i] == 1)].flatten()] | ||
den_line += [tensorf.density_line[i][(den_line_mask[i] == 1)].flatten()] | ||
app_plane += [tensorf.app_plane[i][(app_plane_mask[i] == 1)].flatten()] | ||
app_line += [tensorf.app_line[i][(app_line_mask[i] == 1)].flatten()] | ||
|
||
# scale & minimum value | ||
scale = {k: [0]*3 for k in mask_shape.keys()} | ||
minvl = {k: [0]*3 for k in mask_shape.keys()} | ||
|
||
# (3) quantize non-masked values | ||
for i in range(3): | ||
den_plane[i], scale["density_plane"][i], minvl["density_plane"][i] = quantize_int(den_plane[i], tensorf.grid_bit) | ||
den_line[i], scale["density_line"][i], minvl["density_line"][i] = quantize_int(den_line[i], tensorf.grid_bit) | ||
app_plane[i], scale["app_plane"][i], minvl["app_plane"][i] = quantize_int(app_plane[i], tensorf.grid_bit) | ||
app_line[i], scale["app_line"][i], minvl["app_line"][i] = quantize_int(app_line[i], tensorf.grid_bit) | ||
|
||
# (4) convert dtype (float -> uint8) | ||
for i in range(3): | ||
den_plane[i] = den_plane[i].to(torch.uint8) | ||
den_line[i] = den_line[i].to(torch.uint8) | ||
app_plane[i] = app_plane[i].to(torch.uint8) | ||
app_line[i] = app_line[i].to(torch.uint8) | ||
|
||
# (5) RLE masks | ||
for i in range(3): | ||
den_plane_mask[i] = dense_to_rle(den_plane_mask[i].flatten(), np.int8) | ||
den_line_mask[i] = dense_to_rle(den_line_mask[i].flatten(), np.int8) | ||
app_plane_mask[i] = dense_to_rle(app_plane_mask[i].flatten(), np.int8) | ||
app_line_mask[i] = dense_to_rle(app_line_mask[i].flatten(), np.int8) | ||
|
||
# (6) concatenate masks | ||
mask = np.concatenate([*den_plane_mask, *den_line_mask, *app_plane_mask, *app_line_mask]) | ||
rle_length = { | ||
"density_plane": [r.shape[0] for r in den_plane_mask], | ||
"density_line": [r.shape[0] for r in den_line_mask], | ||
"app_plane": [r.shape[0] for r in app_plane_mask], | ||
"app_line": [r.shape[0] for r in app_line_mask] | ||
} | ||
|
||
# (7) huffman coding masks | ||
mask, mask_tree = huffman(mask) | ||
|
||
# (8) bit -> byte, numpy -> tensor | ||
mask = bit2byte(mask) | ||
|
||
# (9) save model | ||
params = { | ||
"kwargs": tensorf.get_kwargs(), | ||
"feature": { | ||
"density_plane": den_plane, | ||
"density_line": den_line, | ||
"app_plane": app_plane, | ||
"app_line": app_line | ||
}, | ||
"scale": scale, | ||
"minvl": minvl, | ||
"mask": mask, | ||
"mask_tree": mask_tree, | ||
"mask_shape": mask_shape, | ||
"rle_length": rle_length, | ||
"render_module": tensorf.renderModule, | ||
"basis_mat": tensorf.basis_mat | ||
} | ||
|
||
# set directory | ||
root_dir = args.ckpt.split('/')[:-1] | ||
param_path = os.path.join(*root_dir, 'model_compressed.th') | ||
torch.save(params, param_path) | ||
|
||
param_size = os.path.getsize(param_path)/1024 | ||
print(f"============> Grid + Mask + MLP + etc (kb): {param_size} <============") | ||
|
||
if tensorf.alphaMask is not None: | ||
alpha_volume = tensorf.alphaMask.alpha_volume.bool().cpu().numpy() | ||
alpha_mask = { | ||
'alphaMask.shape': alpha_volume.shape, | ||
'alphaMask.mask': np.packbits(alpha_volume.reshape(-1)), | ||
'alphaMask.aabb': tensorf.alphaMask.aabb.cpu() | ||
} | ||
|
||
alpha_mask_path = os.path.join(*root_dir, 'alpha_mask.th') | ||
torch.save(alpha_mask, alpha_mask_path) | ||
|
||
mask_size = os.path.getsize(alpha_mask_path)/1024 | ||
print(f"============> Alpha mask (kb): {mask_size} <============") | ||
|
||
print("encoding done.") | ||
|
||
|
||
@torch.no_grad() | ||
def decompress_method1(args): | ||
# check if ckpt exists | ||
if not os.path.exists(args.ckpt): | ||
print("the ckpt path does not exists!") | ||
return | ||
|
||
# set directory | ||
root_dir = args.ckpt.split('/')[:-1] | ||
param_path = os.path.join(*root_dir, 'model_compressed.th') | ||
|
||
# load checkpoint | ||
ckpt = torch.load(param_path, map_location='cpu') | ||
|
||
# (1) byte -> bit | ||
mask = byte2bit(ckpt["mask"]) | ||
|
||
# (2) inverse huffman | ||
mask = dehuffman(ckpt["mask_tree"], mask) | ||
|
||
# (3) split an array into multiple arrays and inverse RLE | ||
masks = OrderedDict({k: [] for k in ckpt["mask_shape"].keys()}) | ||
|
||
begin = 0 | ||
for key in masks.keys(): | ||
for length in ckpt["rle_length"][key]: | ||
masks[key] += [torch.from_numpy(rle_to_dense(mask[begin:begin+length]))] | ||
masks[key][-1][masks[key][-1] == 0] = -1 | ||
begin += length | ||
|
||
# (4) reshape mask | ||
for key in masks.keys(): | ||
for i in range(3): | ||
shape = ckpt["mask_shape"][key][i] | ||
masks[key][i] = nn.Parameter(masks[key][i].to(torch.float32).reshape(*shape)) | ||
masks[key] = nn.ParameterList(masks[key]) | ||
|
||
# (5) dequantize feature grid | ||
features = {k: [] for k in masks.keys()} | ||
for key in features.keys(): | ||
for i in range(3): | ||
feat = ckpt["feature"][key][i] | ||
scale = ckpt["scale"][key][i] | ||
minvl = ckpt["minvl"][key][i] | ||
features[key] += [nn.Parameter(torch.zeros(ckpt["mask_shape"][key][i]))] | ||
features[key][-1][masks[key][i] == 1] = dequantize_int(feat, scale, minvl) | ||
features[key] = nn.ParameterList(features[key]) | ||
|
||
|
||
# check kwargs | ||
kwargs = ckpt['kwargs'] | ||
kwargs.update({'device': device}) | ||
|
||
# IMPORTANT: aabb to cuda | ||
kwargs["aabb"] = kwargs["aabb"].to(device) | ||
|
||
# load params | ||
tensorf = eval(args.model_name)(**kwargs) | ||
tensorf.density_plane = features["density_plane"].to(device) | ||
tensorf.density_line = features["density_line"].to(device) | ||
tensorf.app_plane = features["app_plane"].to(device) | ||
tensorf.app_line = features["app_line"].to(device) | ||
tensorf.density_plane_mask = masks["density_plane"].to(device) | ||
tensorf.density_line_mask = masks["density_line"].to(device) | ||
tensorf.app_plane_mask = masks["app_plane"].to(device) | ||
tensorf.app_line_mask = masks["app_line"].to(device) | ||
tensorf.renderModule = ckpt["render_module"].to(device) | ||
tensorf.basis_mat = ckpt["basis_mat"].to(device) | ||
|
||
# load alpha mask | ||
alpha_mask_path = os.path.join(*root_dir, 'alpha_mask.th') | ||
if os.path.exists(alpha_mask_path): | ||
print("loading alpha mask...") | ||
alpha_mask = torch.load(alpha_mask_path, map_location=device) | ||
length = np.prod(alpha_mask['alphaMask.shape']) | ||
alpha_volume = torch.from_numpy(np.unpackbits(alpha_mask['alphaMask.mask'])[:length].reshape(alpha_mask['alphaMask.shape'])) | ||
tensorf.alphaMask = AlphaGridMask(device, alpha_mask['alphaMask.aabb'].to(device), alpha_volume.float().to(device)) | ||
|
||
print("model loaded.") | ||
|
||
if args.decompress_and_validate: | ||
# renderder | ||
renderer = OctreeRender_trilinear_fast | ||
|
||
# init dataset | ||
dataset = dataset_dict[args.dataset_name] | ||
test_dataset = dataset(args.datadir, split='test', downsample=args.downsample_train, is_stack=True) | ||
|
||
white_bg = test_dataset.white_bg | ||
ndc_ray = args.ndc_ray | ||
|
||
logfolder = os.path.dirname(args.ckpt) | ||
|
||
os.makedirs(f'{logfolder}/{args.expname}/imgs_test_all', exist_ok=True) | ||
PSNRs_test = evaluation(test_dataset, tensorf, args, renderer, f'{logfolder}/{args.expname}/imgs_test_all/', | ||
N_vis=args.N_vis, N_samples=-1, white_bg = white_bg, ndc_ray=ndc_ray,device=device) | ||
print(f'============> {args.expname} test all psnr: {np.mean(PSNRs_test)} <============') | ||
|
||
|
||
|
||
|
||
if __name__ == '__main__': | ||
torch.set_default_dtype(torch.float32) | ||
torch.manual_seed(20211202) | ||
np.random.seed(20211202) | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
args = config_parser() | ||
|
||
if args.compress: | ||
compress_method1(args, device) | ||
|
||
if args.decompress: | ||
decompress_method1(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
from collections import Counter | ||
import numpy as np | ||
|
||
|
||
class NodeTree(object): | ||
def __init__(self, left=None, right=None): | ||
self.left = left | ||
self.right = right | ||
|
||
def children(self): | ||
return self.left, self.right | ||
|
||
def __str__(self): | ||
return self.left, self.right | ||
|
||
|
||
def huffman_code_tree(node, binString=''): | ||
''' | ||
Function to find Huffman Code | ||
''' | ||
if type(node) in (np.float32, np.float64, np.int8, np.int64, str) : # str for debugging | ||
return {node: binString} | ||
(l, r) = node.children() | ||
# import pdb; pdb.set_trace() | ||
d = dict() | ||
d.update(huffman_code_tree(l, binString + '0')) | ||
d.update(huffman_code_tree(r, binString + '1')) | ||
return d | ||
|
||
|
||
def make_tree(nodes): | ||
''' | ||
Function to make tree | ||
:param nodes: Nodes | ||
:return: Root of the tree | ||
''' | ||
while len(nodes) > 1: | ||
(key1, c1) = nodes[-1] | ||
(key2, c2) = nodes[-2] | ||
nodes = nodes[:-2] | ||
node = NodeTree(key1, key2) | ||
nodes.append((node, c1 + c2)) | ||
nodes = sorted(nodes, key=lambda x: x[1], reverse=True) | ||
return nodes[0][0] | ||
|
||
|
||
def huffman(inputs): | ||
count_dict = dict(Counter(inputs)) | ||
count_dict = sorted(count_dict.items(), key=lambda x: x[1], reverse=True) | ||
count_tree = make_tree(count_dict) | ||
huff_table = huffman_code_tree(count_tree) | ||
encoded = list(map(huff_table.get, inputs)) | ||
encoded = ''.join(map(str, encoded)) | ||
return encoded, count_tree | ||
|
||
|
||
def dehuffman(root, enc): | ||
ret = [] | ||
curr = root | ||
_len = len(enc) | ||
for i in range(_len): | ||
if enc[i] == '0': | ||
curr = curr.left | ||
elif enc[i] == '1': | ||
curr = curr.right | ||
else: | ||
print(enc[i]) | ||
raise NotImplementedError | ||
|
||
if (type(curr) in (np.int8, np.int64)): | ||
ret.append(curr) | ||
curr = root | ||
return np.array(ret) |
Oops, something went wrong.