Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Docstring, unit tests for nectarchain tools, component and containers #114

Merged
merged 6 commits into from
Mar 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 9 additions & 0 deletions src/nectarchain/data/container/chargesContainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,15 @@ class ChargesContainer(ArrayDataContainer):


class ChargesContainers(TriggerMapContainer):
"""
Class representing a ChargesContainers.

This class inherits from the `TriggerMapContainer` class and is used to store trigger or slices of data mappings of `ChargesContainer`.

Attributes:
containers (Field): A field representing the trigger or slices of data mapping of `ChargesContainer`.
"""

containers = Field(
default_factory=partial(Map, ChargesContainer),
description="trigger or slices of data mapping of ChargesContainer",
Expand Down
226 changes: 187 additions & 39 deletions src/nectarchain/data/container/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,19 +23,51 @@


def get_array_keys(container: Container):
"""
Return a list of keys corresponding to fields which are array type in the given container.

Parameters:
container (Container): The container object to search for array fields.

Returns:
list: A list of keys corresponding to array fields in the container.

Example:
>>> container = Container()
>>> container.field1 = np.array([1, 2, 3])
>>> container.field2 = 5
>>> container.field3 = np.array([4, 5, 6])
>>> get_array_keys(container)
['field1', 'field3']
"""
keys = []
for field in container.fields:
for key, field in container.fields.items():
if field.type == np.ndarray:
keys.append(field.key)
keys.append(key)
return keys


class NectarCAMContainer(Container):
"""base class for the NectarCAM containers. This contaner cannot berecursive,
to be directly written with a HDF5TableWriter"""
"""
Base class for the NectarCAM containers. This container cannot be recursive,
to be directly written with a HDF5TableWriter.
"""

@staticmethod
def _container_from_hdf5(path, container_class):
"""
Static method to read a container from an HDF5 file.

Parameters:
path (str or Path): The path to the HDF5 file.
container_class (Container): The class of the container to be filled with data.

Yields:
Container: The container from the data in the HDF5 file.

Example:
>>> container = NectarCAMContainer._container_from_hdf5('path_to_file.h5', MyContainerClass)
"""
if isinstance(path, str):
path = Path(path)

Expand All @@ -49,11 +81,30 @@ def _container_from_hdf5(path, container_class):

yield container

@classmethod
def from_hdf5(cls, path):
"""
Reads a container from an HDF5 file.

Parameters:
path (str or Path): The path to the HDF5 file.

This method will call the _container_from_hdf5 method with the container
argument associated to its own class (ArrayDataContainer)

Yields:
Container: The container generator linked to the HDF5 file.

Example:
>>> container = NectarCAMContainer.from_hdf5('path_to_file.h5')
"""

return cls._container_from_hdf5(path, container_class=cls)


class ArrayDataContainer(NectarCAMContainer):
"""
A container that holds information about waveforms from a specific run.

Attributes:
run_number (int): The run number associated with the waveforms.
nevents (int): The number of events.
Expand Down Expand Up @@ -118,17 +169,91 @@ class ArrayDataContainer(NectarCAMContainer):
type=np.ndarray, dtype=np.uint16, ndim=1, description="events multiplicity"
)


class TriggerMapContainer(Container):
"""
Class representing a TriggerMapContainer.

This class inherits from the `Container` class and is used to store trigger mappings of containers.

Attributes:
containers (Field): A field representing the trigger mapping of containers.

Methods:
is_empty(): Checks if the TriggerMapContainer is empty.
validate(): Validates the TriggerMapContainer by checking if all the containers mapped are filled by correct type.

Example:
>>> container = TriggerMapContainer()
>>> container.is_empty()
True
>>> container.validate()
None
"""

containers = Field(
default_factory=partial(Map, Container),
description="trigger mapping of Container",
)

@classmethod
def from_hdf5(cls, path, slice_index=None):
"""
Reads a container from an HDF5 file.

Parameters:
path (str or Path): The path to the HDF5 file.
slice_index (int, optional): The index of the slice of data within the hdf5 file to read. Default is None.

This method will call the _container_from_hdf5 method with the container argument associated to its own class (ArrayDataContainer)

Yields:
Container: The container generator linked to the HDF5 file.

Example:
>>> container = ArrayDataContainer.from_hdf5('path_to_file.h5')
"""

return cls._container_from_hdf5(
path, slice_index=slice_index, container_class=cls
)

@staticmethod
def _container_from_hdf5(path, container_class, slice_index=None):
"""
Reads a container from an HDF5 file.

Parameters:
path (str or Path): The path to the HDF5 file.
container_class (Container): The class of the container to be read.
slice_index (int, optional): The index of the slice of data within the hdf5 file to read. Default is None.

This method first checks if the path is a string and converts it to a Path object if it is.
It then imports the module of the container class and creates an instance of the container class.

If the HDF5 file contains more than one slice and no slice index is provided,
it reads all slices and yields a generator of containers.
If a slice index is provided, it reads only the specified slice and returns the container instance.

Yields:
Container: The container associated to the HDF5 file.

Raises:
NoSuchNodeError: If the specified node does not exist in the HDF5 file.
Exception: If any other error occurs.

Example:
>>> container = ArrayDataContainer._container_from_hdf5('path_to_file.h5', MyContainerClass)
"""
if isinstance(path, str):
path = Path(path)
module = importlib.import_module(f"{container_class.__module__}")
container = eval(f"module.{container_class.__name__}s")()
container = eval(f"module.{container_class.__name__}")()

with HDF5TableReader(path) as reader:
if len(reader._h5file.root.__members__) > 1 and slice_index is None:
log.info(
f"reading {container_class.__name__}s containing {len(reader._h5file.root.__members__)} slices, will return a generator"
f"reading {container_class.__name__} containing {len(reader._h5file.root.__members__)} slices, will return a generator"
)
for data in reader._h5file.root.__members__:
# container.containers[data] = eval(f"module.{container_class.__name__}s")()
Expand Down Expand Up @@ -163,57 +288,44 @@ def _container_from_hdf5(path, container_class, slice_index=None):
else:
if slice_index is None:
log.info(
f"reading {container_class.__name__}s containing a single slice, will return the {container_class.__name__}s instance"
f"reading {container_class.__name__} containing a single slice, will return the {container_class.__name__} instance"
)
data = "data"
else:
log.info(
f"reading slice {slice_index} of {container_class.__name__}s, will return the {container_class.__name__}s instance"
f"reading slice {slice_index} of {container_class.__name__}, will return the {container_class.__name__} instance"
)
data = f"data_{slice_index}"
for key, trigger in EventType.__members__.items():
try:
container_data = eval(f"reader._h5file.root.{data}.__members__")
_mask = [
container_class.__name__ in _word
for _word in container_data
]
_container_data = np.array(container_data)[_mask]
if len(_container_data) == 1:
tableReader = reader.read(
table_name=f"/{data}/{_container_data[0]}/{trigger.name}",
containers=container_class,
)
container.containers[trigger] = next(tableReader)
else:
log.info(
f"there is {len(_container_data)} entry corresponding to a {container_class} table save, unable to load"
)
tableReader = reader.read(
table_name=f"/{data}/{trigger.name}",
containers=eval(
f"module.{container.fields['containers'].default_factory.args[0].__name__}"
),
)
container.containers[trigger] = next(tableReader)
except NoSuchNodeError as err:
log.warning(err)
except Exception as err:
log.error(err, exc_info=True)
raise err
yield container
return container

@classmethod
def from_hdf5(cls, path, slice_index=None):
return cls._container_from_hdf5(
path, slice_index=slice_index, container_class=cls
)


class TriggerMapContainer(Container):
containers = Field(
default_factory=partial(Map, Container),
description="trigger mapping of Container",
)

def is_empty(self):
"""This method check if the container is empty

Returns:
bool: True if the container is empty, False otherwise.
"""
return len(self.containers.keys()) == 0

def validate(self):
"""apply the validate method recursively to all the containers that are mapped within the TriggerMapContainer

Raises:
FieldValidationError: if one container is not valid.
"""
super().validate()
for i, container in enumerate(self.containers):
if i == 0:
Expand All @@ -226,7 +338,43 @@ def validate(self):


def merge_map_ArrayDataContainer(triggerMapContainer: TriggerMapContainer):
"""
Merge and map ArrayDataContainer

This function takes a TriggerMapContainer as input and merges the array fields of the containers mapped within the TriggerMapContainer. The merged array fields are concatenated along the 0th axis. The function also updates the 'nevents' field of the output container by summing the 'nevents' field of all the mapped containers.

Parameters:
triggerMapContainer (TriggerMapContainer): The TriggerMapContainer object containing the containers to be merged and mapped.

Returns:
ArrayDataContainer: The merged and mapped ArrayDataContainer object.

Example:
>>> triggerMapContainer = TriggerMapContainer()
>>> container1 = ArrayDataContainer()
>>> container1.field1 = np.array([1, 2, 3])
>>> container1.field2 = np.array([4, 5, 6])
>>> container1.nevents
3
>>> container2 = ArrayDataContainer()
>>> container2.field1 = np.array([7, 8, 9])
>>> container2.field2 = np.array([10, 11, 12])
>>> container2.nevents
3
>>> triggerMapContainer.containers['container1'] = container1
>>> triggerMapContainer.containers['container2'] = container2
>>> merged_container = merge_map_ArrayDataContainer(triggerMapContainer)
>>> merged_container.field1
array([1, 2, 3, 7, 8, 9])
>>> merged_container.field2
array([ 4, 5, 6, 10, 11, 12])
>>> merged_container.nevents
6
"""
triggerMapContainer.validate()
log.warning(
"TAKE CARE TO MERGE CONTAINERS ONLY IF PIXELS ID, RUN_NUMBER (OR ANY FIELD THAT ARE NOT ARRAY) ARE THE SAME"
)
keys = list(triggerMapContainer.containers.keys())
output_container = copy.deepcopy(triggerMapContainer.containers[keys[0]])
for key in keys[1:]:
Expand Down
Loading
Loading